增强 gC3N4@TiO2-x/MoS2 三元纳米复合材料的电化学储能性能

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Kunal Roy, Navya Rani M*, Tathagata Sardar, Rita Joshi, Manikanta P N, Jagadeesh Babu Sriramoju, Channabasaveshwar V. Yelamaggad, Ashwin C. Gowda and Dinesh Rangappa*, 
{"title":"增强 gC3N4@TiO2-x/MoS2 三元纳米复合材料的电化学储能性能","authors":"Kunal Roy,&nbsp;Navya Rani M*,&nbsp;Tathagata Sardar,&nbsp;Rita Joshi,&nbsp;Manikanta P N,&nbsp;Jagadeesh Babu Sriramoju,&nbsp;Channabasaveshwar V. Yelamaggad,&nbsp;Ashwin C. Gowda and Dinesh Rangappa*,&nbsp;","doi":"10.1021/acsaem.4c0188610.1021/acsaem.4c01886","DOIUrl":null,"url":null,"abstract":"<p >Herein, we delineate the preparation of a g-C<sub>3</sub>N<sub>4</sub>-added defect-induced TiO<sub>2-x</sub>/MoS<sub>2</sub> ternary nanocomposite using a two-step hydrothermal method followed by a solvent-reflux process. The oxygen vacancy-incorporated TiO<sub>2-<i>x</i></sub>, its binary TiO<sub>2-<i>x</i></sub>-MoS<sub>2</sub>, and ternary gC<sub>3</sub>N<sub>4</sub>@TiO<sub>2-<i>x</i></sub>-MoS<sub>2</sub> nanocomposites are evaluated by different structural, morphological, and compositional property measurement techniques. Further, the electrochemical charge-storage performance is measured by fabricating a supercapacitor in a three-electrode as well as a two-electrode system. The 30 wt % g-C<sub>3</sub>N<sub>4</sub> (among 20, 30, and 40% gC<sub>3</sub>N<sub>4</sub>)-based TiO<sub>2-<i>x</i></sub>/MoS<sub>2</sub> shows a very high specific areal capacitance of 1351.47 mF·cm<sup>–2</sup> at a current density of 0.5 mA·cm<sup>–2</sup>. An extraordinary cycling stability with 90% capacity retention after 5000 cycles at a current density of 4 mA·cm<sup>–2</sup> is achieved. Moreover, an asymmetric supercapacitor (ASC) is fabricated, obtaining an outstanding volumetric energy density of 784.31 mWh·cm<sup>–3</sup> and a power density of 9 W·cm<sup>–3</sup> with an extraordinary capacity retention of up to 95% after 5000 cycles. Thus, it is demonstrated that the ternary nanocomposite electrode has an outstanding potential to exhibit remarkable capacitance with enhanced cyclic stability.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Electrochemical Energy Storing Performance of gC3N4@TiO2-x/MoS2 Ternary Nanocomposite\",\"authors\":\"Kunal Roy,&nbsp;Navya Rani M*,&nbsp;Tathagata Sardar,&nbsp;Rita Joshi,&nbsp;Manikanta P N,&nbsp;Jagadeesh Babu Sriramoju,&nbsp;Channabasaveshwar V. Yelamaggad,&nbsp;Ashwin C. Gowda and Dinesh Rangappa*,&nbsp;\",\"doi\":\"10.1021/acsaem.4c0188610.1021/acsaem.4c01886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Herein, we delineate the preparation of a g-C<sub>3</sub>N<sub>4</sub>-added defect-induced TiO<sub>2-x</sub>/MoS<sub>2</sub> ternary nanocomposite using a two-step hydrothermal method followed by a solvent-reflux process. The oxygen vacancy-incorporated TiO<sub>2-<i>x</i></sub>, its binary TiO<sub>2-<i>x</i></sub>-MoS<sub>2</sub>, and ternary gC<sub>3</sub>N<sub>4</sub>@TiO<sub>2-<i>x</i></sub>-MoS<sub>2</sub> nanocomposites are evaluated by different structural, morphological, and compositional property measurement techniques. Further, the electrochemical charge-storage performance is measured by fabricating a supercapacitor in a three-electrode as well as a two-electrode system. The 30 wt % g-C<sub>3</sub>N<sub>4</sub> (among 20, 30, and 40% gC<sub>3</sub>N<sub>4</sub>)-based TiO<sub>2-<i>x</i></sub>/MoS<sub>2</sub> shows a very high specific areal capacitance of 1351.47 mF·cm<sup>–2</sup> at a current density of 0.5 mA·cm<sup>–2</sup>. An extraordinary cycling stability with 90% capacity retention after 5000 cycles at a current density of 4 mA·cm<sup>–2</sup> is achieved. Moreover, an asymmetric supercapacitor (ASC) is fabricated, obtaining an outstanding volumetric energy density of 784.31 mWh·cm<sup>–3</sup> and a power density of 9 W·cm<sup>–3</sup> with an extraordinary capacity retention of up to 95% after 5000 cycles. Thus, it is demonstrated that the ternary nanocomposite electrode has an outstanding potential to exhibit remarkable capacitance with enhanced cyclic stability.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.4c01886\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c01886","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在此,我们采用两步水热法和溶剂回流法制备了 g-C3N4 添加缺陷诱导的 TiO2-x/MoS2 三元纳米复合材料。通过不同的结构、形态和成分特性测量技术,对氧空位并入的 TiO2-x、其二元 TiO2-x-MoS2 和三元 gC3N4@TiO2-x-MoS2 纳米复合材料进行了评估。此外,还通过在三电极和两电极系统中制造超级电容器测量了电化学电荷存储性能。在电流密度为 0.5 mA-cm-2 时,30 wt % g-C3N4(在 20、30 和 40% gC3N4 中)基 TiO2-x/MoS2 显示出 1351.47 mF-cm-2 的极高比面积电容。在电流密度为 4 mA-cm-2 的条件下,经过 5000 次循环后,电容保持率达到 90%。此外,还制造出一种非对称超级电容器(ASC),其体积能量密度高达 784.31 mWh-cm-3,功率密度为 9 W-cm-3,循环 5000 次后容量保持率高达 95%。由此证明,这种三元纳米复合电极具有显著的电容潜力和更强的循环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced Electrochemical Energy Storing Performance of gC3N4@TiO2-x/MoS2 Ternary Nanocomposite

Enhanced Electrochemical Energy Storing Performance of gC3N4@TiO2-x/MoS2 Ternary Nanocomposite

Herein, we delineate the preparation of a g-C3N4-added defect-induced TiO2-x/MoS2 ternary nanocomposite using a two-step hydrothermal method followed by a solvent-reflux process. The oxygen vacancy-incorporated TiO2-x, its binary TiO2-x-MoS2, and ternary gC3N4@TiO2-x-MoS2 nanocomposites are evaluated by different structural, morphological, and compositional property measurement techniques. Further, the electrochemical charge-storage performance is measured by fabricating a supercapacitor in a three-electrode as well as a two-electrode system. The 30 wt % g-C3N4 (among 20, 30, and 40% gC3N4)-based TiO2-x/MoS2 shows a very high specific areal capacitance of 1351.47 mF·cm–2 at a current density of 0.5 mA·cm–2. An extraordinary cycling stability with 90% capacity retention after 5000 cycles at a current density of 4 mA·cm–2 is achieved. Moreover, an asymmetric supercapacitor (ASC) is fabricated, obtaining an outstanding volumetric energy density of 784.31 mWh·cm–3 and a power density of 9 W·cm–3 with an extraordinary capacity retention of up to 95% after 5000 cycles. Thus, it is demonstrated that the ternary nanocomposite electrode has an outstanding potential to exhibit remarkable capacitance with enhanced cyclic stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信