{"title":"自适应稳健在线投资组合选择","authors":"Man Yiu Tsang , Tony Sit , Hoi Ying Wong","doi":"10.1016/j.ejor.2024.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>The online portfolio selection (OLPS) problem differs from classical portfolio model problems, as it involves making sequential investment decisions. Many OLPS strategies described in the literature capture market movement based on various beliefs and are shown to be profitable. In this paper, we propose a robust optimization (RO)-based strategy that takes transaction costs into account. Moreover, unlike existing studies that calibrate model parameters from benchmark data sets, we develop a novel adaptive scheme that decides the parameters sequentially. With a wide range of parameters as input, our scheme captures market uptrend and protects against market downtrend while controlling trading frequency to avoid excessive transaction costs. We numerically demonstrate the advantages of our adaptive scheme against several benchmarks under various settings. Our adaptive scheme may also be useful in general sequential decision-making problems. Finally, we compare the performance of our strategy with that of existing OLPS strategies using both benchmark and newly collected data sets. Our strategy outperforms these existing OLPS strategies in terms of cumulative returns and competitive Sharpe ratios across diversified data sets, demonstrating its adaptability-driven superiority.</div></div>","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive robust online portfolio selection\",\"authors\":\"Man Yiu Tsang , Tony Sit , Hoi Ying Wong\",\"doi\":\"10.1016/j.ejor.2024.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The online portfolio selection (OLPS) problem differs from classical portfolio model problems, as it involves making sequential investment decisions. Many OLPS strategies described in the literature capture market movement based on various beliefs and are shown to be profitable. In this paper, we propose a robust optimization (RO)-based strategy that takes transaction costs into account. Moreover, unlike existing studies that calibrate model parameters from benchmark data sets, we develop a novel adaptive scheme that decides the parameters sequentially. With a wide range of parameters as input, our scheme captures market uptrend and protects against market downtrend while controlling trading frequency to avoid excessive transaction costs. We numerically demonstrate the advantages of our adaptive scheme against several benchmarks under various settings. Our adaptive scheme may also be useful in general sequential decision-making problems. Finally, we compare the performance of our strategy with that of existing OLPS strategies using both benchmark and newly collected data sets. Our strategy outperforms these existing OLPS strategies in terms of cumulative returns and competitive Sharpe ratios across diversified data sets, demonstrating its adaptability-driven superiority.</div></div>\",\"PeriodicalId\":55161,\"journal\":{\"name\":\"European Journal of Operational Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Operational Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377221724006933\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377221724006933","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
The online portfolio selection (OLPS) problem differs from classical portfolio model problems, as it involves making sequential investment decisions. Many OLPS strategies described in the literature capture market movement based on various beliefs and are shown to be profitable. In this paper, we propose a robust optimization (RO)-based strategy that takes transaction costs into account. Moreover, unlike existing studies that calibrate model parameters from benchmark data sets, we develop a novel adaptive scheme that decides the parameters sequentially. With a wide range of parameters as input, our scheme captures market uptrend and protects against market downtrend while controlling trading frequency to avoid excessive transaction costs. We numerically demonstrate the advantages of our adaptive scheme against several benchmarks under various settings. Our adaptive scheme may also be useful in general sequential decision-making problems. Finally, we compare the performance of our strategy with that of existing OLPS strategies using both benchmark and newly collected data sets. Our strategy outperforms these existing OLPS strategies in terms of cumulative returns and competitive Sharpe ratios across diversified data sets, demonstrating its adaptability-driven superiority.
期刊介绍:
The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.