{"title":"梯度流的高阶能量稳定离散变分导数方案","authors":"Jizu Huang","doi":"10.1093/imanum/drae062","DOIUrl":null,"url":null,"abstract":"The existing discrete variational derivative method is fully implicit and only second-order accurate for gradient flow. In this paper, we propose a framework to construct high-order implicit (original) energy stable schemes and second-order semi-implicit (modified) energy stable schemes. Combined with the Runge–Kutta process, we can build high-order and unconditionally (original) energy stable schemes based on the discrete variational derivative method. The new energy stable schemes are implicit and leads to a large sparse nonlinear algebraic system at each time step, which can be efficiently solved by using an inexact Newton-type solver. To avoid solving nonlinear algebraic systems, we then present a relaxed discrete variational derivative method, which can construct second-order, linear and unconditionally (modified) energy stable schemes. Several numerical simulations are performed to investigate the efficiency, stability and accuracy of the newly proposed schemes.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"199 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-order energy stable discrete variational derivative schemes for gradient flows\",\"authors\":\"Jizu Huang\",\"doi\":\"10.1093/imanum/drae062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existing discrete variational derivative method is fully implicit and only second-order accurate for gradient flow. In this paper, we propose a framework to construct high-order implicit (original) energy stable schemes and second-order semi-implicit (modified) energy stable schemes. Combined with the Runge–Kutta process, we can build high-order and unconditionally (original) energy stable schemes based on the discrete variational derivative method. The new energy stable schemes are implicit and leads to a large sparse nonlinear algebraic system at each time step, which can be efficiently solved by using an inexact Newton-type solver. To avoid solving nonlinear algebraic systems, we then present a relaxed discrete variational derivative method, which can construct second-order, linear and unconditionally (modified) energy stable schemes. Several numerical simulations are performed to investigate the efficiency, stability and accuracy of the newly proposed schemes.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"199 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drae062\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae062","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
High-order energy stable discrete variational derivative schemes for gradient flows
The existing discrete variational derivative method is fully implicit and only second-order accurate for gradient flow. In this paper, we propose a framework to construct high-order implicit (original) energy stable schemes and second-order semi-implicit (modified) energy stable schemes. Combined with the Runge–Kutta process, we can build high-order and unconditionally (original) energy stable schemes based on the discrete variational derivative method. The new energy stable schemes are implicit and leads to a large sparse nonlinear algebraic system at each time step, which can be efficiently solved by using an inexact Newton-type solver. To avoid solving nonlinear algebraic systems, we then present a relaxed discrete variational derivative method, which can construct second-order, linear and unconditionally (modified) energy stable schemes. Several numerical simulations are performed to investigate the efficiency, stability and accuracy of the newly proposed schemes.
期刊介绍:
The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.