{"title":"事件增强快照马赛克高光谱帧去模糊。","authors":"Mengyue Geng,Lizhi Wang,Lin Zhu,Wei Zhang,Ruiqin Xiong,Yonghong Tian","doi":"10.1109/tpami.2024.3465455","DOIUrl":null,"url":null,"abstract":"Snapshot Mosaic Hyperspectral Cameras (SMHCs) are popular hyperspectral imaging devices for acquiring both color and motion details of scenes. However, the narrow-band spectral filters in SMHCs may negatively impact their motion perception ability, resulting in blurry SMHC frames. In this paper, we propose a hardware-software collaborative approach to address the blurring issue of SMHCs. Our approach involves integrating SMHCs with neuromorphic event cameras for efficient event-enhanced SMHC frame deblurring. To achieve spectral information recovery guided by event signals, we formulate a spectral-aware Event-based Double Integral (sEDI) model that links SMHC frames and events from a spectral perspective, providing principled model design insights. Then, we develop a Diffusion-guided Noise Awareness (DNA) training framework that utilizes diffusion models to learn noise-aware features and promote model robustness towards camera noise. Furthermore, we design an Event-enhanced Hyperspectral frame Deblurring Network (EvHDNet) based on sEDI, which is trained with DNA and features improved spatial-spectral learning and modality interaction for reliable SMHC frame deblurring. Experiments on both synthetic data and real data show that the proposed DNA + EvHDNet outperforms stateof-the-art methods on both spatial and spectral fidelity. The code and dataset will be made publicly available.","PeriodicalId":13426,"journal":{"name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","volume":"21 1","pages":""},"PeriodicalIF":20.8000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Event-enhanced Snapshot Mosaic Hyperspectral Frame Deblurring.\",\"authors\":\"Mengyue Geng,Lizhi Wang,Lin Zhu,Wei Zhang,Ruiqin Xiong,Yonghong Tian\",\"doi\":\"10.1109/tpami.2024.3465455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Snapshot Mosaic Hyperspectral Cameras (SMHCs) are popular hyperspectral imaging devices for acquiring both color and motion details of scenes. However, the narrow-band spectral filters in SMHCs may negatively impact their motion perception ability, resulting in blurry SMHC frames. In this paper, we propose a hardware-software collaborative approach to address the blurring issue of SMHCs. Our approach involves integrating SMHCs with neuromorphic event cameras for efficient event-enhanced SMHC frame deblurring. To achieve spectral information recovery guided by event signals, we formulate a spectral-aware Event-based Double Integral (sEDI) model that links SMHC frames and events from a spectral perspective, providing principled model design insights. Then, we develop a Diffusion-guided Noise Awareness (DNA) training framework that utilizes diffusion models to learn noise-aware features and promote model robustness towards camera noise. Furthermore, we design an Event-enhanced Hyperspectral frame Deblurring Network (EvHDNet) based on sEDI, which is trained with DNA and features improved spatial-spectral learning and modality interaction for reliable SMHC frame deblurring. Experiments on both synthetic data and real data show that the proposed DNA + EvHDNet outperforms stateof-the-art methods on both spatial and spectral fidelity. The code and dataset will be made publicly available.\",\"PeriodicalId\":13426,\"journal\":{\"name\":\"IEEE Transactions on Pattern Analysis and Machine Intelligence\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":20.8000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Pattern Analysis and Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/tpami.2024.3465455\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Pattern Analysis and Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tpami.2024.3465455","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Snapshot Mosaic Hyperspectral Cameras (SMHCs) are popular hyperspectral imaging devices for acquiring both color and motion details of scenes. However, the narrow-band spectral filters in SMHCs may negatively impact their motion perception ability, resulting in blurry SMHC frames. In this paper, we propose a hardware-software collaborative approach to address the blurring issue of SMHCs. Our approach involves integrating SMHCs with neuromorphic event cameras for efficient event-enhanced SMHC frame deblurring. To achieve spectral information recovery guided by event signals, we formulate a spectral-aware Event-based Double Integral (sEDI) model that links SMHC frames and events from a spectral perspective, providing principled model design insights. Then, we develop a Diffusion-guided Noise Awareness (DNA) training framework that utilizes diffusion models to learn noise-aware features and promote model robustness towards camera noise. Furthermore, we design an Event-enhanced Hyperspectral frame Deblurring Network (EvHDNet) based on sEDI, which is trained with DNA and features improved spatial-spectral learning and modality interaction for reliable SMHC frame deblurring. Experiments on both synthetic data and real data show that the proposed DNA + EvHDNet outperforms stateof-the-art methods on both spatial and spectral fidelity. The code and dataset will be made publicly available.
期刊介绍:
The IEEE Transactions on Pattern Analysis and Machine Intelligence publishes articles on all traditional areas of computer vision and image understanding, all traditional areas of pattern analysis and recognition, and selected areas of machine intelligence, with a particular emphasis on machine learning for pattern analysis. Areas such as techniques for visual search, document and handwriting analysis, medical image analysis, video and image sequence analysis, content-based retrieval of image and video, face and gesture recognition and relevant specialized hardware and/or software architectures are also covered.