Lutfun Nahar , Md. Saiful Islam , Mohammad Awrangjeb , Rob Verhoeve
{"title":"交易卡的自动边角分级:通过深度学习进行缺陷识别和信心校准","authors":"Lutfun Nahar , Md. Saiful Islam , Mohammad Awrangjeb , Rob Verhoeve","doi":"10.1016/j.compind.2024.104187","DOIUrl":null,"url":null,"abstract":"<div><p>This research focuses on trading card quality inspection, where defects have a significant effect on both the quality inspection and grading. The present inspection procedure is subjective which means the grading is sensitive to mistakes made by individuals. To address this, a deep neural network based on transfer learning for automated defect detection is proposed with a particular emphasis on corner grading which is a crucial factor in overall card grading. This paper presents an extension of our prior study, in which we achieved an accuracy of 78% by employing the VGG-net and InceptionV3 models. In this study, our emphasis is on the DenseNet model where convolutional layers are used to extract features and regularisation methods including batch normalisation and spatial dropout are incorporated for better defect classification. Our approach outperformed prior findings, as evidenced by experimental results based on a real dataset provided by our industry partner, achieving an 83% mean accuracy in defect classification. Additionally, this study investigates various calibration approaches to fine-tune the model confidence. To make the model more reliable, a rule-based approach is incorporated to classify defects based on confidence scores. Finally, a human-in-the-loop system is integrated to inspect the misclassified samples. Our results demonstrate that the model’s performance and confidence are expected to improve further when a large number of misclassified samples, along with human feedback, are used to retrain the network.</p></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"164 ","pages":"Article 104187"},"PeriodicalIF":8.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166361524001155/pdfft?md5=94620ae9f7ac6add13e46e3c2ecef436&pid=1-s2.0-S0166361524001155-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Automated corner grading of trading cards: Defect identification and confidence calibration through deep learning\",\"authors\":\"Lutfun Nahar , Md. Saiful Islam , Mohammad Awrangjeb , Rob Verhoeve\",\"doi\":\"10.1016/j.compind.2024.104187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research focuses on trading card quality inspection, where defects have a significant effect on both the quality inspection and grading. The present inspection procedure is subjective which means the grading is sensitive to mistakes made by individuals. To address this, a deep neural network based on transfer learning for automated defect detection is proposed with a particular emphasis on corner grading which is a crucial factor in overall card grading. This paper presents an extension of our prior study, in which we achieved an accuracy of 78% by employing the VGG-net and InceptionV3 models. In this study, our emphasis is on the DenseNet model where convolutional layers are used to extract features and regularisation methods including batch normalisation and spatial dropout are incorporated for better defect classification. Our approach outperformed prior findings, as evidenced by experimental results based on a real dataset provided by our industry partner, achieving an 83% mean accuracy in defect classification. Additionally, this study investigates various calibration approaches to fine-tune the model confidence. To make the model more reliable, a rule-based approach is incorporated to classify defects based on confidence scores. Finally, a human-in-the-loop system is integrated to inspect the misclassified samples. Our results demonstrate that the model’s performance and confidence are expected to improve further when a large number of misclassified samples, along with human feedback, are used to retrain the network.</p></div>\",\"PeriodicalId\":55219,\"journal\":{\"name\":\"Computers in Industry\",\"volume\":\"164 \",\"pages\":\"Article 104187\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0166361524001155/pdfft?md5=94620ae9f7ac6add13e46e3c2ecef436&pid=1-s2.0-S0166361524001155-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in Industry\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166361524001155\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361524001155","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Automated corner grading of trading cards: Defect identification and confidence calibration through deep learning
This research focuses on trading card quality inspection, where defects have a significant effect on both the quality inspection and grading. The present inspection procedure is subjective which means the grading is sensitive to mistakes made by individuals. To address this, a deep neural network based on transfer learning for automated defect detection is proposed with a particular emphasis on corner grading which is a crucial factor in overall card grading. This paper presents an extension of our prior study, in which we achieved an accuracy of 78% by employing the VGG-net and InceptionV3 models. In this study, our emphasis is on the DenseNet model where convolutional layers are used to extract features and regularisation methods including batch normalisation and spatial dropout are incorporated for better defect classification. Our approach outperformed prior findings, as evidenced by experimental results based on a real dataset provided by our industry partner, achieving an 83% mean accuracy in defect classification. Additionally, this study investigates various calibration approaches to fine-tune the model confidence. To make the model more reliable, a rule-based approach is incorporated to classify defects based on confidence scores. Finally, a human-in-the-loop system is integrated to inspect the misclassified samples. Our results demonstrate that the model’s performance and confidence are expected to improve further when a large number of misclassified samples, along with human feedback, are used to retrain the network.
期刊介绍:
The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that:
• Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry;
• Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry;
• Foster connections or integrations across diverse application areas of ICT in industry.