Ling Xiong , Qiang Li , LeLe Tang , Fagen Li , Xingchun Yang
{"title":"使用 PUF 的基于区块链的车载 ad hoc 网络条件隐私保护认证方案","authors":"Ling Xiong , Qiang Li , LeLe Tang , Fagen Li , Xingchun Yang","doi":"10.1016/j.future.2024.107530","DOIUrl":null,"url":null,"abstract":"<div><p>Vehicular ad hoc networks (VANET) have been the key indispensable module of the future intelligent transportation system. Security and privacy are two essential attributes that protect the safe driving of vehicles. Over the last two decades, numerous conditional privacy-preserving authentication schemes have been presented for the VANET environment. However, existing schemes have various limitations, including security issues, high storage overhead, and frequent interactions. In order to bridge these difficulties, this work combines physically unclonable function and blockchain technology to construct a conditional privacy-preserving authentication scheme for the VANET environment. Specifically, we combine physical unclonable function and dynamic pseudonym techniques to generate unique pseudonym IDs dynamically and private keys using physical unclonable function to enhance privacy protection and resist physical attack. To reduce the number of communication rounds during the verification process, we deployed lightweight blockchain nodes to avoid direct communication between the receiver and the blockchain network. The proposed scheme demonstrates resilience against various potential attacks through comprehensive security analysis and proof. Furthermore, performance metrics indicate that our scheme outperforms similar schemes, making it suitable for resource-constrained VANET.</p></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"163 ","pages":"Article 107530"},"PeriodicalIF":6.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blockchain-based conditional privacy-preserving authentication scheme using PUF for vehicular ad hoc networks\",\"authors\":\"Ling Xiong , Qiang Li , LeLe Tang , Fagen Li , Xingchun Yang\",\"doi\":\"10.1016/j.future.2024.107530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vehicular ad hoc networks (VANET) have been the key indispensable module of the future intelligent transportation system. Security and privacy are two essential attributes that protect the safe driving of vehicles. Over the last two decades, numerous conditional privacy-preserving authentication schemes have been presented for the VANET environment. However, existing schemes have various limitations, including security issues, high storage overhead, and frequent interactions. In order to bridge these difficulties, this work combines physically unclonable function and blockchain technology to construct a conditional privacy-preserving authentication scheme for the VANET environment. Specifically, we combine physical unclonable function and dynamic pseudonym techniques to generate unique pseudonym IDs dynamically and private keys using physical unclonable function to enhance privacy protection and resist physical attack. To reduce the number of communication rounds during the verification process, we deployed lightweight blockchain nodes to avoid direct communication between the receiver and the blockchain network. The proposed scheme demonstrates resilience against various potential attacks through comprehensive security analysis and proof. Furthermore, performance metrics indicate that our scheme outperforms similar schemes, making it suitable for resource-constrained VANET.</p></div>\",\"PeriodicalId\":55132,\"journal\":{\"name\":\"Future Generation Computer Systems-The International Journal of Escience\",\"volume\":\"163 \",\"pages\":\"Article 107530\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Generation Computer Systems-The International Journal of Escience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167739X24004941\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X24004941","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
车载特设网络(VANET)已成为未来智能交通系统不可或缺的关键模块。安全和隐私是保护车辆安全行驶的两个基本属性。在过去的二十年里,针对 VANET 环境提出了许多条件隐私保护认证方案。然而,现有方案存在各种局限性,包括安全问题、高存储开销和频繁交互。为了克服这些困难,本研究将物理不可克隆功能与区块链技术相结合,构建了一种适用于 VANET 环境的条件式隐私保护认证方案。具体来说,我们将物理不可克隆函数和动态假名技术结合起来,利用物理不可克隆函数动态生成唯一的假名 ID 和私钥,以加强隐私保护和抵御物理攻击。为了减少验证过程中的通信轮数,我们部署了轻量级区块链节点,以避免接收方与区块链网络之间的直接通信。通过全面的安全分析和证明,所提出的方案展示了抵御各种潜在攻击的能力。此外,性能指标表明,我们的方案优于类似方案,因此适用于资源受限的 VANET。
Blockchain-based conditional privacy-preserving authentication scheme using PUF for vehicular ad hoc networks
Vehicular ad hoc networks (VANET) have been the key indispensable module of the future intelligent transportation system. Security and privacy are two essential attributes that protect the safe driving of vehicles. Over the last two decades, numerous conditional privacy-preserving authentication schemes have been presented for the VANET environment. However, existing schemes have various limitations, including security issues, high storage overhead, and frequent interactions. In order to bridge these difficulties, this work combines physically unclonable function and blockchain technology to construct a conditional privacy-preserving authentication scheme for the VANET environment. Specifically, we combine physical unclonable function and dynamic pseudonym techniques to generate unique pseudonym IDs dynamically and private keys using physical unclonable function to enhance privacy protection and resist physical attack. To reduce the number of communication rounds during the verification process, we deployed lightweight blockchain nodes to avoid direct communication between the receiver and the blockchain network. The proposed scheme demonstrates resilience against various potential attacks through comprehensive security analysis and proof. Furthermore, performance metrics indicate that our scheme outperforms similar schemes, making it suitable for resource-constrained VANET.
期刊介绍:
Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications.
Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration.
Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.