{"title":"VEGF-ERCNN:利用集合残差 CNN 预测血管内皮生长因子的深度学习模型","authors":"Farman Ali , Majdi Khalid , Atef Masmoudi , Wajdi Alghamdi , Ayman Yafoz , Raed Alsini","doi":"10.1016/j.jocs.2024.102448","DOIUrl":null,"url":null,"abstract":"<div><p>Vascular Endothelial Growth Factor (VEGF), a signaling protein family, is essential in angiogenesis, regulating the growth and survival of endothelial cells that create blood vessels. VEGF is critical in osteogenesis for coordinating blood vessel growth with bone formation, resulting in a well-vascularized environment that promotes nutrition and oxygen delivery to bone-forming cells. Predicting VEGF is crucial, yet experimental methods for identification are both costly and time-consuming. This paper introduces VEGF-ERCNN, an innovative computational model for VEGF prediction using deep learning. Two datasets were generated using primary sequences, and a novel feature descriptor called multi fragmented-position specific scoring matrix-discrete wavelet transformation (MF-PSSM-DWT) was developed to extract numerical characteristics from these sequences. Model training is performed via deep learning techniques such as generative adversarial network (GAN), gated recurrent unit (GRU), ensemble residual convolutional neural network (ERCNN), and convolutional neural network (CNN). The VEGF-ERCNN outperformed other competitive predictors on both training and testing datasets by securing the highest 92.12 % and 83.45 % accuracies, respectively. Accurate prediction of VEGF therapeutic targeting has transformed treatment techniques, establishing it as a crucial participant in both health and disease.</p></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"83 ","pages":"Article 102448"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VEGF-ERCNN: A deep learning-based model for prediction of vascular endothelial growth factor using ensemble residual CNN\",\"authors\":\"Farman Ali , Majdi Khalid , Atef Masmoudi , Wajdi Alghamdi , Ayman Yafoz , Raed Alsini\",\"doi\":\"10.1016/j.jocs.2024.102448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vascular Endothelial Growth Factor (VEGF), a signaling protein family, is essential in angiogenesis, regulating the growth and survival of endothelial cells that create blood vessels. VEGF is critical in osteogenesis for coordinating blood vessel growth with bone formation, resulting in a well-vascularized environment that promotes nutrition and oxygen delivery to bone-forming cells. Predicting VEGF is crucial, yet experimental methods for identification are both costly and time-consuming. This paper introduces VEGF-ERCNN, an innovative computational model for VEGF prediction using deep learning. Two datasets were generated using primary sequences, and a novel feature descriptor called multi fragmented-position specific scoring matrix-discrete wavelet transformation (MF-PSSM-DWT) was developed to extract numerical characteristics from these sequences. Model training is performed via deep learning techniques such as generative adversarial network (GAN), gated recurrent unit (GRU), ensemble residual convolutional neural network (ERCNN), and convolutional neural network (CNN). The VEGF-ERCNN outperformed other competitive predictors on both training and testing datasets by securing the highest 92.12 % and 83.45 % accuracies, respectively. Accurate prediction of VEGF therapeutic targeting has transformed treatment techniques, establishing it as a crucial participant in both health and disease.</p></div>\",\"PeriodicalId\":48907,\"journal\":{\"name\":\"Journal of Computational Science\",\"volume\":\"83 \",\"pages\":\"Article 102448\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877750324002412\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750324002412","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
VEGF-ERCNN: A deep learning-based model for prediction of vascular endothelial growth factor using ensemble residual CNN
Vascular Endothelial Growth Factor (VEGF), a signaling protein family, is essential in angiogenesis, regulating the growth and survival of endothelial cells that create blood vessels. VEGF is critical in osteogenesis for coordinating blood vessel growth with bone formation, resulting in a well-vascularized environment that promotes nutrition and oxygen delivery to bone-forming cells. Predicting VEGF is crucial, yet experimental methods for identification are both costly and time-consuming. This paper introduces VEGF-ERCNN, an innovative computational model for VEGF prediction using deep learning. Two datasets were generated using primary sequences, and a novel feature descriptor called multi fragmented-position specific scoring matrix-discrete wavelet transformation (MF-PSSM-DWT) was developed to extract numerical characteristics from these sequences. Model training is performed via deep learning techniques such as generative adversarial network (GAN), gated recurrent unit (GRU), ensemble residual convolutional neural network (ERCNN), and convolutional neural network (CNN). The VEGF-ERCNN outperformed other competitive predictors on both training and testing datasets by securing the highest 92.12 % and 83.45 % accuracies, respectively. Accurate prediction of VEGF therapeutic targeting has transformed treatment techniques, establishing it as a crucial participant in both health and disease.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).