{"title":"基于转录组分析的金乌贼幼体对苯并[a]芘暴露的反应机制研究","authors":"Fei Han, Xiaodong Zheng","doi":"10.1016/j.cbd.2024.101331","DOIUrl":null,"url":null,"abstract":"<div><p>Benzo[<em>a</em>]pyrene (BaP), a polycyclic aromatic hydrocarbon from incomplete combustion, builds up in coastal regions through river runoff, atmospheric deposition, and coastal activities. BaP's lipophilicity and stability lead to persistent environmental impacts due to its resistance to degradation. The economically valuable golden cuttlefish, <em>Sepia esculenta</em>, often spawns and hatches in shallow waters, making it prone to BaP exposure. This study employs transcriptomic analysis to initially investigate juvenile golden cuttlefish's response to BaP. The results indicate that BaP exposure significantly affects various physiological and molecular functions of the juveniles, particularly affecting pathways related to immune and inflammatory responses, metabolic regulation, and nervous system functions. Functional enrichment and PPI network analyses identified key genes such as HSGALT-like, ASAH1-like, and GTL-like in the BaP response. These genes exhibited a suppressive trend during short-term exposure, indicating that BaP exposure may influence lipid metabolism, energy conversion, and digestive functions at the genetic level, which could further disrupt the overall physiological state and developmental processes of juvenile golden cuttlefish. The study offers novel insights into BaP's effects on juvenile golden cuttlefish and marine life, aiding marine ecosystem and biodiversity conservation.</p></div>","PeriodicalId":55235,"journal":{"name":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptomic analysis-based study on the response mechanism of juvenile golden cuttlefish (Sepia esculenta) to benzo[a]pyrene exposure\",\"authors\":\"Fei Han, Xiaodong Zheng\",\"doi\":\"10.1016/j.cbd.2024.101331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Benzo[<em>a</em>]pyrene (BaP), a polycyclic aromatic hydrocarbon from incomplete combustion, builds up in coastal regions through river runoff, atmospheric deposition, and coastal activities. BaP's lipophilicity and stability lead to persistent environmental impacts due to its resistance to degradation. The economically valuable golden cuttlefish, <em>Sepia esculenta</em>, often spawns and hatches in shallow waters, making it prone to BaP exposure. This study employs transcriptomic analysis to initially investigate juvenile golden cuttlefish's response to BaP. The results indicate that BaP exposure significantly affects various physiological and molecular functions of the juveniles, particularly affecting pathways related to immune and inflammatory responses, metabolic regulation, and nervous system functions. Functional enrichment and PPI network analyses identified key genes such as HSGALT-like, ASAH1-like, and GTL-like in the BaP response. These genes exhibited a suppressive trend during short-term exposure, indicating that BaP exposure may influence lipid metabolism, energy conversion, and digestive functions at the genetic level, which could further disrupt the overall physiological state and developmental processes of juvenile golden cuttlefish. The study offers novel insights into BaP's effects on juvenile golden cuttlefish and marine life, aiding marine ecosystem and biodiversity conservation.</p></div>\",\"PeriodicalId\":55235,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology D-Genomics & Proteomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology D-Genomics & Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1744117X24001448\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1744117X24001448","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Transcriptomic analysis-based study on the response mechanism of juvenile golden cuttlefish (Sepia esculenta) to benzo[a]pyrene exposure
Benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon from incomplete combustion, builds up in coastal regions through river runoff, atmospheric deposition, and coastal activities. BaP's lipophilicity and stability lead to persistent environmental impacts due to its resistance to degradation. The economically valuable golden cuttlefish, Sepia esculenta, often spawns and hatches in shallow waters, making it prone to BaP exposure. This study employs transcriptomic analysis to initially investigate juvenile golden cuttlefish's response to BaP. The results indicate that BaP exposure significantly affects various physiological and molecular functions of the juveniles, particularly affecting pathways related to immune and inflammatory responses, metabolic regulation, and nervous system functions. Functional enrichment and PPI network analyses identified key genes such as HSGALT-like, ASAH1-like, and GTL-like in the BaP response. These genes exhibited a suppressive trend during short-term exposure, indicating that BaP exposure may influence lipid metabolism, energy conversion, and digestive functions at the genetic level, which could further disrupt the overall physiological state and developmental processes of juvenile golden cuttlefish. The study offers novel insights into BaP's effects on juvenile golden cuttlefish and marine life, aiding marine ecosystem and biodiversity conservation.
期刊介绍:
Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology.
Part D: Genomics and Proteomics (CBPD), focuses on “omics” approaches to physiology, including comparative and functional genomics, metagenomics, transcriptomics, proteomics, metabolomics, and lipidomics. Most studies employ “omics” and/or system biology to test specific hypotheses about molecular and biochemical mechanisms underlying physiological responses to the environment. We encourage papers that address fundamental questions in comparative physiology and biochemistry rather than studies with a focus that is purely technical, methodological or descriptive in nature.