Yannick Faulconnier , Karol Pawlowski , Christophe Chambon , Denys Durand , José Pires , Christine Leroux
{"title":"受到乳腺内脂多糖挑战的早期泌乳奶牛的肝脏转录组和蛋白质组受营养限制的影响","authors":"Yannick Faulconnier , Karol Pawlowski , Christophe Chambon , Denys Durand , José Pires , Christine Leroux","doi":"10.1016/j.cbd.2024.101326","DOIUrl":null,"url":null,"abstract":"<div><p>The objective was to evaluate the effects of nutrient restriction on liver function 24 h after an intramammary lipopolysaccharide (LPS) challenge in early lactation cows using transcriptomic and proteomic analyses. Multiparous Holstein cows were fed a lactation diet (CONT, n = 8) throughout the study or were switched to a diet diluted with barley straw (48 % DM) for 96 h (REST, n = 8) starting at 24 (18 to 30) days in milk. At 72 h, a healthy rear mammary quarter was infused with 50 μg of LPS in all cows. Blood and liver biopsies were collected at 96 h, corresponding to 24 h after LPS challenge. Liver transcriptome was analyzed with a 44 K bovine microarray and proteome by LC MS/MS. Transcriptomic and proteomic data were analyzed using GeneSpring (moderated <em>t</em>-test with Westfall-Young correction) and the “between subject design”, respectively. Data mining was performed using Panther and Pathway Studio software. By design, the negative energy balance was −68 and −37 MJ/d in REST and CONT, respectively. Plasma non-esterified FAs, and β-hydroxybutyrate were significantly greater in REST compared to CONT, which is consistent with 96 h of nutrient restriction in REST and ketosis induction. We detected 77 and 91 differentially expressed genes at mRNA and protein levels, respectively, between CONT and REST. Genes involved in fatty acid synthesis (<em>e.g.</em>: <em>ACAT</em>, <em>FASN</em>, <em>SCD</em>) were downregulated in REST, whereas those involved in fatty acid oxidation, detoxification, cholesterol synthesis, lipoprotein lipid secretion, and gluconeogenesis (<em>e.g.</em>: <em>ACAD</em>, <em>CPT1A</em>, <em>CPT1B</em>, <em>CPT2</em>) were upregulated. Differentially abundant mRNAs and proteins were consistent with negative energy balance and plasma metabolite concentrations, and reflected a state of intense lipomobilization, glucose deficit and ketogenesis in REST cows. Nutrient restriction did not change in deep liver expression of genes directly involved in immune function 24 h after an intramammary LPS challenge.</p></div>","PeriodicalId":55235,"journal":{"name":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liver transcriptome and proteome are modulated by nutrient restriction in early lactation cows challenged with intramammary lipopolysaccharide\",\"authors\":\"Yannick Faulconnier , Karol Pawlowski , Christophe Chambon , Denys Durand , José Pires , Christine Leroux\",\"doi\":\"10.1016/j.cbd.2024.101326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The objective was to evaluate the effects of nutrient restriction on liver function 24 h after an intramammary lipopolysaccharide (LPS) challenge in early lactation cows using transcriptomic and proteomic analyses. Multiparous Holstein cows were fed a lactation diet (CONT, n = 8) throughout the study or were switched to a diet diluted with barley straw (48 % DM) for 96 h (REST, n = 8) starting at 24 (18 to 30) days in milk. At 72 h, a healthy rear mammary quarter was infused with 50 μg of LPS in all cows. Blood and liver biopsies were collected at 96 h, corresponding to 24 h after LPS challenge. Liver transcriptome was analyzed with a 44 K bovine microarray and proteome by LC MS/MS. Transcriptomic and proteomic data were analyzed using GeneSpring (moderated <em>t</em>-test with Westfall-Young correction) and the “between subject design”, respectively. Data mining was performed using Panther and Pathway Studio software. By design, the negative energy balance was −68 and −37 MJ/d in REST and CONT, respectively. Plasma non-esterified FAs, and β-hydroxybutyrate were significantly greater in REST compared to CONT, which is consistent with 96 h of nutrient restriction in REST and ketosis induction. We detected 77 and 91 differentially expressed genes at mRNA and protein levels, respectively, between CONT and REST. Genes involved in fatty acid synthesis (<em>e.g.</em>: <em>ACAT</em>, <em>FASN</em>, <em>SCD</em>) were downregulated in REST, whereas those involved in fatty acid oxidation, detoxification, cholesterol synthesis, lipoprotein lipid secretion, and gluconeogenesis (<em>e.g.</em>: <em>ACAD</em>, <em>CPT1A</em>, <em>CPT1B</em>, <em>CPT2</em>) were upregulated. Differentially abundant mRNAs and proteins were consistent with negative energy balance and plasma metabolite concentrations, and reflected a state of intense lipomobilization, glucose deficit and ketogenesis in REST cows. Nutrient restriction did not change in deep liver expression of genes directly involved in immune function 24 h after an intramammary LPS challenge.</p></div>\",\"PeriodicalId\":55235,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology D-Genomics & Proteomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology D-Genomics & Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1744117X24001394\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1744117X24001394","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Liver transcriptome and proteome are modulated by nutrient restriction in early lactation cows challenged with intramammary lipopolysaccharide
The objective was to evaluate the effects of nutrient restriction on liver function 24 h after an intramammary lipopolysaccharide (LPS) challenge in early lactation cows using transcriptomic and proteomic analyses. Multiparous Holstein cows were fed a lactation diet (CONT, n = 8) throughout the study or were switched to a diet diluted with barley straw (48 % DM) for 96 h (REST, n = 8) starting at 24 (18 to 30) days in milk. At 72 h, a healthy rear mammary quarter was infused with 50 μg of LPS in all cows. Blood and liver biopsies were collected at 96 h, corresponding to 24 h after LPS challenge. Liver transcriptome was analyzed with a 44 K bovine microarray and proteome by LC MS/MS. Transcriptomic and proteomic data were analyzed using GeneSpring (moderated t-test with Westfall-Young correction) and the “between subject design”, respectively. Data mining was performed using Panther and Pathway Studio software. By design, the negative energy balance was −68 and −37 MJ/d in REST and CONT, respectively. Plasma non-esterified FAs, and β-hydroxybutyrate were significantly greater in REST compared to CONT, which is consistent with 96 h of nutrient restriction in REST and ketosis induction. We detected 77 and 91 differentially expressed genes at mRNA and protein levels, respectively, between CONT and REST. Genes involved in fatty acid synthesis (e.g.: ACAT, FASN, SCD) were downregulated in REST, whereas those involved in fatty acid oxidation, detoxification, cholesterol synthesis, lipoprotein lipid secretion, and gluconeogenesis (e.g.: ACAD, CPT1A, CPT1B, CPT2) were upregulated. Differentially abundant mRNAs and proteins were consistent with negative energy balance and plasma metabolite concentrations, and reflected a state of intense lipomobilization, glucose deficit and ketogenesis in REST cows. Nutrient restriction did not change in deep liver expression of genes directly involved in immune function 24 h after an intramammary LPS challenge.
期刊介绍:
Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology.
Part D: Genomics and Proteomics (CBPD), focuses on “omics” approaches to physiology, including comparative and functional genomics, metagenomics, transcriptomics, proteomics, metabolomics, and lipidomics. Most studies employ “omics” and/or system biology to test specific hypotheses about molecular and biochemical mechanisms underlying physiological responses to the environment. We encourage papers that address fundamental questions in comparative physiology and biochemistry rather than studies with a focus that is purely technical, methodological or descriptive in nature.