多晶二氧化铀再结晶的相场模拟和有效热导率计算

IF 1.9 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Yanbo Jiang , Wenlong Shen , Yongxiao La , Xun Lan , Wenbo Liu
{"title":"多晶二氧化铀再结晶的相场模拟和有效热导率计算","authors":"Yanbo Jiang ,&nbsp;Wenlong Shen ,&nbsp;Yongxiao La ,&nbsp;Xun Lan ,&nbsp;Wenbo Liu","doi":"10.1016/j.anucene.2024.110918","DOIUrl":null,"url":null,"abstract":"<div><p>During the operational lifespan of uranium dioxide (UO<sub>2</sub>) fuel, the emergence of a specific process termed recrystallization may transpire. The influence of recrystallization on the thermal conductivity of the fuel holds paramount significance, bearing direct implications for both safety and economic considerations. In the current investigation, a phase-field model incorporating an explicit nucleation model for recrystallized grains was formulated to study the formation and growth of recrystallized grains within polycrystalline UO<sub>2</sub>. The simulations conducted in this study revealed that the kinetics of recrystallization adhered to the empirical equation, and the observed variation in grain size during recrystallization exhibited concordance with experimental data. To elucidate the variation in thermal conductivity during recrystallization, a thermal conductivity model based on the microstructure generated through phase-field simulations was employed. The relationship between grain boundary (GB) thermal resistance and phase-field simulation parameters has been determined through empirical formulas. The simulated values of thermal conductivity during recrystallization demonstrated a commendable agreement with empirical functions. By comparing the computational results of thermal conductivity with or without recrystallization, it is proven that recrystallization is beneficial to the effective thermal conductivity because the increase in thermal conductivity due to the elimination of defects by recrystallization exceeds the decrease in thermal conductivity due to the introduction of large area GBs.</p></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase-field simulation of recrystallization and calculation of the effective thermal conductivity of polycrystalline UO2\",\"authors\":\"Yanbo Jiang ,&nbsp;Wenlong Shen ,&nbsp;Yongxiao La ,&nbsp;Xun Lan ,&nbsp;Wenbo Liu\",\"doi\":\"10.1016/j.anucene.2024.110918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>During the operational lifespan of uranium dioxide (UO<sub>2</sub>) fuel, the emergence of a specific process termed recrystallization may transpire. The influence of recrystallization on the thermal conductivity of the fuel holds paramount significance, bearing direct implications for both safety and economic considerations. In the current investigation, a phase-field model incorporating an explicit nucleation model for recrystallized grains was formulated to study the formation and growth of recrystallized grains within polycrystalline UO<sub>2</sub>. The simulations conducted in this study revealed that the kinetics of recrystallization adhered to the empirical equation, and the observed variation in grain size during recrystallization exhibited concordance with experimental data. To elucidate the variation in thermal conductivity during recrystallization, a thermal conductivity model based on the microstructure generated through phase-field simulations was employed. The relationship between grain boundary (GB) thermal resistance and phase-field simulation parameters has been determined through empirical formulas. The simulated values of thermal conductivity during recrystallization demonstrated a commendable agreement with empirical functions. By comparing the computational results of thermal conductivity with or without recrystallization, it is proven that recrystallization is beneficial to the effective thermal conductivity because the increase in thermal conductivity due to the elimination of defects by recrystallization exceeds the decrease in thermal conductivity due to the introduction of large area GBs.</p></div>\",\"PeriodicalId\":8006,\"journal\":{\"name\":\"Annals of Nuclear Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306454924005814\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306454924005814","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在二氧化铀(UO2)燃料的运行寿命期间,可能会出现一种称为再结晶的特殊过程。再结晶对燃料热导率的影响至关重要,对安全和经济因素都有直接影响。在当前的研究中,制定了一个相场模型,其中包含一个明确的再结晶晶粒成核模型,用于研究多晶二氧化铀中再结晶晶粒的形成和生长。模拟结果表明,再结晶动力学符合经验方程,观察到的再结晶过程中晶粒大小的变化与实验数据一致。为阐明再结晶过程中热导率的变化,采用了基于相场模拟产生的微观结构的热导率模型。通过经验公式确定了晶界(GB)热阻与相场模拟参数之间的关系。再结晶过程中的热导率模拟值与经验函数的一致性值得称赞。通过比较有无再结晶的热导率计算结果,证明了再结晶有利于提高有效热导率,因为再结晶消除缺陷所带来的热导率提高超过了引入大面积晶界所带来的热导率降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase-field simulation of recrystallization and calculation of the effective thermal conductivity of polycrystalline UO2

During the operational lifespan of uranium dioxide (UO2) fuel, the emergence of a specific process termed recrystallization may transpire. The influence of recrystallization on the thermal conductivity of the fuel holds paramount significance, bearing direct implications for both safety and economic considerations. In the current investigation, a phase-field model incorporating an explicit nucleation model for recrystallized grains was formulated to study the formation and growth of recrystallized grains within polycrystalline UO2. The simulations conducted in this study revealed that the kinetics of recrystallization adhered to the empirical equation, and the observed variation in grain size during recrystallization exhibited concordance with experimental data. To elucidate the variation in thermal conductivity during recrystallization, a thermal conductivity model based on the microstructure generated through phase-field simulations was employed. The relationship between grain boundary (GB) thermal resistance and phase-field simulation parameters has been determined through empirical formulas. The simulated values of thermal conductivity during recrystallization demonstrated a commendable agreement with empirical functions. By comparing the computational results of thermal conductivity with or without recrystallization, it is proven that recrystallization is beneficial to the effective thermal conductivity because the increase in thermal conductivity due to the elimination of defects by recrystallization exceeds the decrease in thermal conductivity due to the introduction of large area GBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Nuclear Energy
Annals of Nuclear Energy 工程技术-核科学技术
CiteScore
4.30
自引率
21.10%
发文量
632
审稿时长
7.3 months
期刊介绍: Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信