贝弗顿-霍尔特-里克尔竞争模型的全局吸引子及其一维和二维结构

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Qi Cheng , Jun Zhang , Weinian Zhang
{"title":"贝弗顿-霍尔特-里克尔竞争模型的全局吸引子及其一维和二维结构","authors":"Qi Cheng ,&nbsp;Jun Zhang ,&nbsp;Weinian Zhang","doi":"10.1016/j.physd.2024.134354","DOIUrl":null,"url":null,"abstract":"<div><p>Beverton–Holt Ricker competition model is a planar difference system that describes intraspecific competition among individuals and interspecific competition. Known works investigated the stability of equilibria in some cases, showed the existence of stable 2-periodic points when there are no interior equilibria, and found numerically an attractor with riddled basin of attraction for some appropriate parameters. In this paper, we prove the existence of the global attractor, and give a complete description on qualitative properties and bifurcations of all equilibria except for some cases of high degeneracy. Moreover, we obtain different kinds of 1-dimensional or 2-dimensional structures of the global attractor, which were not considered in the known work.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global attractor and its 1D and 2D structures of Beverton–Holt Ricker competition model\",\"authors\":\"Qi Cheng ,&nbsp;Jun Zhang ,&nbsp;Weinian Zhang\",\"doi\":\"10.1016/j.physd.2024.134354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Beverton–Holt Ricker competition model is a planar difference system that describes intraspecific competition among individuals and interspecific competition. Known works investigated the stability of equilibria in some cases, showed the existence of stable 2-periodic points when there are no interior equilibria, and found numerically an attractor with riddled basin of attraction for some appropriate parameters. In this paper, we prove the existence of the global attractor, and give a complete description on qualitative properties and bifurcations of all equilibria except for some cases of high degeneracy. Moreover, we obtain different kinds of 1-dimensional or 2-dimensional structures of the global attractor, which were not considered in the known work.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016727892400304X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016727892400304X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

贝弗顿-霍尔特-里克尔竞争模型是一个平面差分系统,用于描述个体间的种内竞争和种间竞争。已知的著作研究了某些情况下平衡点的稳定性,证明了当不存在内部平衡点时存在稳定的 2 周期点,并在数值上发现了在某些适当参数下具有谜状吸引盆地的吸引子。在本文中,我们证明了全局吸引子的存在,并完整地描述了除某些高退化情况外所有均衡的定性和分岔。此外,我们还得到了全局吸引子的不同类型的一维或二维结构,而这些结构在已知工作中是没有考虑到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global attractor and its 1D and 2D structures of Beverton–Holt Ricker competition model

Beverton–Holt Ricker competition model is a planar difference system that describes intraspecific competition among individuals and interspecific competition. Known works investigated the stability of equilibria in some cases, showed the existence of stable 2-periodic points when there are no interior equilibria, and found numerically an attractor with riddled basin of attraction for some appropriate parameters. In this paper, we prove the existence of the global attractor, and give a complete description on qualitative properties and bifurcations of all equilibria except for some cases of high degeneracy. Moreover, we obtain different kinds of 1-dimensional or 2-dimensional structures of the global attractor, which were not considered in the known work.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信