{"title":"用于车辆计算资源供应和弹性服务的真实双重拍卖机制","authors":"Xi Liu , Jun Liu , Weidong Li","doi":"10.1016/j.comnet.2024.110806","DOIUrl":null,"url":null,"abstract":"<div><p>Intelligent vehicles, equipped with powerful computing and sensing resources, serve as versatile mobile computing platforms, offering many resources to users. This study focuses on resource provisioning and elastic service to address the paramount issue of resource provisioning for in-vehicle computing. It introduces an elastic sensing service, enabling users to declare multiple requested areas to obtain sensing data. It allows various vehicles to collaborate in providing services to a single user when individual vehicles cannot complete the task alone. The approach formulated as a double auction-based setting involves a market with multiple self-interested users and vehicles. The main objective is to design a mechanism that maximizes social welfare. First, a greedy mechanism provides different task allocation strategies while ensuring truthfulness. The proposed mechanism is truthful and equilibrium-driven, achieving individual rationality, consumer sovereignty, and budget balance. It demonstrates the approximation ratio. Simulation results indicate that the proposed mechanism can increase social welfare and the number of served users by at least 29% and 9%, respectively, compared with baseline methods. This research paves the way for more efficient resource provisioning in intelligent vehicles, ultimately enhancing these mobile computing platforms’ overall user experience and capabilities.</p></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A truthful double auction mechanism for resource provisioning and elastic service in vehicle computing\",\"authors\":\"Xi Liu , Jun Liu , Weidong Li\",\"doi\":\"10.1016/j.comnet.2024.110806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Intelligent vehicles, equipped with powerful computing and sensing resources, serve as versatile mobile computing platforms, offering many resources to users. This study focuses on resource provisioning and elastic service to address the paramount issue of resource provisioning for in-vehicle computing. It introduces an elastic sensing service, enabling users to declare multiple requested areas to obtain sensing data. It allows various vehicles to collaborate in providing services to a single user when individual vehicles cannot complete the task alone. The approach formulated as a double auction-based setting involves a market with multiple self-interested users and vehicles. The main objective is to design a mechanism that maximizes social welfare. First, a greedy mechanism provides different task allocation strategies while ensuring truthfulness. The proposed mechanism is truthful and equilibrium-driven, achieving individual rationality, consumer sovereignty, and budget balance. It demonstrates the approximation ratio. Simulation results indicate that the proposed mechanism can increase social welfare and the number of served users by at least 29% and 9%, respectively, compared with baseline methods. This research paves the way for more efficient resource provisioning in intelligent vehicles, ultimately enhancing these mobile computing platforms’ overall user experience and capabilities.</p></div>\",\"PeriodicalId\":50637,\"journal\":{\"name\":\"Computer Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389128624006388\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128624006388","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A truthful double auction mechanism for resource provisioning and elastic service in vehicle computing
Intelligent vehicles, equipped with powerful computing and sensing resources, serve as versatile mobile computing platforms, offering many resources to users. This study focuses on resource provisioning and elastic service to address the paramount issue of resource provisioning for in-vehicle computing. It introduces an elastic sensing service, enabling users to declare multiple requested areas to obtain sensing data. It allows various vehicles to collaborate in providing services to a single user when individual vehicles cannot complete the task alone. The approach formulated as a double auction-based setting involves a market with multiple self-interested users and vehicles. The main objective is to design a mechanism that maximizes social welfare. First, a greedy mechanism provides different task allocation strategies while ensuring truthfulness. The proposed mechanism is truthful and equilibrium-driven, achieving individual rationality, consumer sovereignty, and budget balance. It demonstrates the approximation ratio. Simulation results indicate that the proposed mechanism can increase social welfare and the number of served users by at least 29% and 9%, respectively, compared with baseline methods. This research paves the way for more efficient resource provisioning in intelligent vehicles, ultimately enhancing these mobile computing platforms’ overall user experience and capabilities.
期刊介绍:
Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.