Kai Li, Huaxin Sun, Yakun Bo, Wanfeng Zhang, Wenchao Huang, Yang Zhao, Hang Yang, Yankai Guo, Xianhui Zhou, Yanmei Lu, Ling Zhang, Baopeng Tang
{"title":"在易发生心房颤动的大鼠模型中,MCPIP1 通过加剧 miR-26a-5p/FRAT/Wnt 轴介导的心房纤维化来促进心房重塑","authors":"Kai Li, Huaxin Sun, Yakun Bo, Wanfeng Zhang, Wenchao Huang, Yang Zhao, Hang Yang, Yankai Guo, Xianhui Zhou, Yanmei Lu, Ling Zhang, Baopeng Tang","doi":"10.1096/fj.202400546RR","DOIUrl":null,"url":null,"abstract":"<p>Atrial fibrosis plays a critical role in the pathogenesis of atrial fibrillation (AF). Monocyte chemotactic protein–induced protein-1 (MCPIP1), recognized as a functional ribonuclease (RNase), exacerbates cardiac remodeling and contributes to a range of cardiovascular diseases. However, the involvement of MCPIP1 in atrial fibrosis and development of AF, along with its underlying biological mechanisms, remains poorly understood. This study demonstrated that knockdown of MCPIP1 significantly reduced AF inducibility, decreased left atrial diameter, and ameliorated atrial fibrosis, coinciding with reduced FRAT1/2/Wnt/β-catenin signaling. Furthermore, the MCPIP1-D141N mutation attenuated AF vulnerability and atrial remodeling compared to MCPIP1 overexpression in an acetylcholine and calcium chloride (ACh-CaCl<sub>2</sub>)–induced rat model of AF. Conversely, overexpression of FRAT1/2 partially reversed the cardioprotective effects of MCPIP1-D141N mutation. Using H9C2 cell lines, we observed that MCPIP1 may induce a transcriptional effect that downregulates miR-26a-5p expression, and luciferase and RNA immunoprecipitation (RIP) assays substantiated the direct interaction between miR-26a-5p and FRAT1/2. Moreover, overexpression of miR-26a-5p countered MCPIP1-induced atrial remodeling and attenuated the progression of AF. In conclusion, these findings indicate that MCPIP1 facilitates atrial remodeling and the progression of AF by exacerbating miR-26a-5p/FRAT/Wnt axis–mediated atrial fibrosis through its RNase activity in an ACh-CaCl<sub>2</sub>–induced rat model of AF.</p>","PeriodicalId":50455,"journal":{"name":"FASEB Journal","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MCPIP1 promotes atrial remodeling by exacerbating miR-26a-5p/FRAT/Wnt axis–mediated atrial fibrosis in a rat model susceptible to atrial fibrillation\",\"authors\":\"Kai Li, Huaxin Sun, Yakun Bo, Wanfeng Zhang, Wenchao Huang, Yang Zhao, Hang Yang, Yankai Guo, Xianhui Zhou, Yanmei Lu, Ling Zhang, Baopeng Tang\",\"doi\":\"10.1096/fj.202400546RR\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Atrial fibrosis plays a critical role in the pathogenesis of atrial fibrillation (AF). Monocyte chemotactic protein–induced protein-1 (MCPIP1), recognized as a functional ribonuclease (RNase), exacerbates cardiac remodeling and contributes to a range of cardiovascular diseases. However, the involvement of MCPIP1 in atrial fibrosis and development of AF, along with its underlying biological mechanisms, remains poorly understood. This study demonstrated that knockdown of MCPIP1 significantly reduced AF inducibility, decreased left atrial diameter, and ameliorated atrial fibrosis, coinciding with reduced FRAT1/2/Wnt/β-catenin signaling. Furthermore, the MCPIP1-D141N mutation attenuated AF vulnerability and atrial remodeling compared to MCPIP1 overexpression in an acetylcholine and calcium chloride (ACh-CaCl<sub>2</sub>)–induced rat model of AF. Conversely, overexpression of FRAT1/2 partially reversed the cardioprotective effects of MCPIP1-D141N mutation. Using H9C2 cell lines, we observed that MCPIP1 may induce a transcriptional effect that downregulates miR-26a-5p expression, and luciferase and RNA immunoprecipitation (RIP) assays substantiated the direct interaction between miR-26a-5p and FRAT1/2. Moreover, overexpression of miR-26a-5p countered MCPIP1-induced atrial remodeling and attenuated the progression of AF. In conclusion, these findings indicate that MCPIP1 facilitates atrial remodeling and the progression of AF by exacerbating miR-26a-5p/FRAT/Wnt axis–mediated atrial fibrosis through its RNase activity in an ACh-CaCl<sub>2</sub>–induced rat model of AF.</p>\",\"PeriodicalId\":50455,\"journal\":{\"name\":\"FASEB Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FASEB Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1096/fj.202400546RR\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202400546RR","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
MCPIP1 promotes atrial remodeling by exacerbating miR-26a-5p/FRAT/Wnt axis–mediated atrial fibrosis in a rat model susceptible to atrial fibrillation
Atrial fibrosis plays a critical role in the pathogenesis of atrial fibrillation (AF). Monocyte chemotactic protein–induced protein-1 (MCPIP1), recognized as a functional ribonuclease (RNase), exacerbates cardiac remodeling and contributes to a range of cardiovascular diseases. However, the involvement of MCPIP1 in atrial fibrosis and development of AF, along with its underlying biological mechanisms, remains poorly understood. This study demonstrated that knockdown of MCPIP1 significantly reduced AF inducibility, decreased left atrial diameter, and ameliorated atrial fibrosis, coinciding with reduced FRAT1/2/Wnt/β-catenin signaling. Furthermore, the MCPIP1-D141N mutation attenuated AF vulnerability and atrial remodeling compared to MCPIP1 overexpression in an acetylcholine and calcium chloride (ACh-CaCl2)–induced rat model of AF. Conversely, overexpression of FRAT1/2 partially reversed the cardioprotective effects of MCPIP1-D141N mutation. Using H9C2 cell lines, we observed that MCPIP1 may induce a transcriptional effect that downregulates miR-26a-5p expression, and luciferase and RNA immunoprecipitation (RIP) assays substantiated the direct interaction between miR-26a-5p and FRAT1/2. Moreover, overexpression of miR-26a-5p countered MCPIP1-induced atrial remodeling and attenuated the progression of AF. In conclusion, these findings indicate that MCPIP1 facilitates atrial remodeling and the progression of AF by exacerbating miR-26a-5p/FRAT/Wnt axis–mediated atrial fibrosis through its RNase activity in an ACh-CaCl2–induced rat model of AF.
期刊介绍:
The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.