Jorge Hernández-Bernal , Alejandro Cardesín-Moinelo , Ricardo Hueso , Eleni Ravanis , Abel Burgos-Sierra , Simon Wood , Marc Costa-Sitja , Alfredo Escalante , Emmanuel Grotheer , Julia Marín-Yaseli de la Parra , Donald Merrit , Miguel Almeida , Michel Breitfellner , Mar Sierra , Patrick Martin , Dmitri Titov , Colin Wilson , Ethan Larsen , Teresa del Río-Gaztelurrutia , Agustín Sánchez-Lavega
{"title":"火星快车上的视觉监控摄像机(VMC):利用火星轨道上的老式网络摄像头制作的新型科学仪器","authors":"Jorge Hernández-Bernal , Alejandro Cardesín-Moinelo , Ricardo Hueso , Eleni Ravanis , Abel Burgos-Sierra , Simon Wood , Marc Costa-Sitja , Alfredo Escalante , Emmanuel Grotheer , Julia Marín-Yaseli de la Parra , Donald Merrit , Miguel Almeida , Michel Breitfellner , Mar Sierra , Patrick Martin , Dmitri Titov , Colin Wilson , Ethan Larsen , Teresa del Río-Gaztelurrutia , Agustín Sánchez-Lavega","doi":"10.1016/j.pss.2024.105972","DOIUrl":null,"url":null,"abstract":"<div><p>The Visual Monitoring Camera (VMC) is a small imaging instrument onboard Mars Express with a field of view of ∼40°x30°. The camera was initially intended to provide visual confirmation of the separation of the Beagle 2 lander and has similar technical specifications to a typical webcam of the 2000s. In 2007, a few years after the end of its original mission, VMC was turned on again to obtain full-disk images of Mars to be used for outreach purposes. As VMC obtained more images, the scientific potential of the camera became evident, and in 2018 the camera was given an upgraded status of a new scientific instrument, with science goals in the field of Martian atmosphere meteorology. The wide Field of View of the camera combined with the orbit of Mars Express enable the acquisition of full-disk images of the planet showing different local times, which for a long time has been rare among orbital missions around Mars. The small data volume of images also allows videos that show the atmospheric dynamics of dust and cloud systems to be obtained. This paper is intended to be the new reference paper for VMC as a scientific instrument, and thus provides an overview of the updated procedures to plan, command and execute science observations of the Martian atmosphere. These observations produce valuable science data that is calibrated and distributed to the community for scientific use.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"251 ","pages":"Article 105972"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Visual Monitoring Camera (VMC) on Mars Express: A new science instrument made from an old webcam orbiting Mars\",\"authors\":\"Jorge Hernández-Bernal , Alejandro Cardesín-Moinelo , Ricardo Hueso , Eleni Ravanis , Abel Burgos-Sierra , Simon Wood , Marc Costa-Sitja , Alfredo Escalante , Emmanuel Grotheer , Julia Marín-Yaseli de la Parra , Donald Merrit , Miguel Almeida , Michel Breitfellner , Mar Sierra , Patrick Martin , Dmitri Titov , Colin Wilson , Ethan Larsen , Teresa del Río-Gaztelurrutia , Agustín Sánchez-Lavega\",\"doi\":\"10.1016/j.pss.2024.105972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Visual Monitoring Camera (VMC) is a small imaging instrument onboard Mars Express with a field of view of ∼40°x30°. The camera was initially intended to provide visual confirmation of the separation of the Beagle 2 lander and has similar technical specifications to a typical webcam of the 2000s. In 2007, a few years after the end of its original mission, VMC was turned on again to obtain full-disk images of Mars to be used for outreach purposes. As VMC obtained more images, the scientific potential of the camera became evident, and in 2018 the camera was given an upgraded status of a new scientific instrument, with science goals in the field of Martian atmosphere meteorology. The wide Field of View of the camera combined with the orbit of Mars Express enable the acquisition of full-disk images of the planet showing different local times, which for a long time has been rare among orbital missions around Mars. The small data volume of images also allows videos that show the atmospheric dynamics of dust and cloud systems to be obtained. This paper is intended to be the new reference paper for VMC as a scientific instrument, and thus provides an overview of the updated procedures to plan, command and execute science observations of the Martian atmosphere. These observations produce valuable science data that is calibrated and distributed to the community for scientific use.</p></div>\",\"PeriodicalId\":20054,\"journal\":{\"name\":\"Planetary and Space Science\",\"volume\":\"251 \",\"pages\":\"Article 105972\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Planetary and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032063324001363\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planetary and Space Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032063324001363","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
The Visual Monitoring Camera (VMC) on Mars Express: A new science instrument made from an old webcam orbiting Mars
The Visual Monitoring Camera (VMC) is a small imaging instrument onboard Mars Express with a field of view of ∼40°x30°. The camera was initially intended to provide visual confirmation of the separation of the Beagle 2 lander and has similar technical specifications to a typical webcam of the 2000s. In 2007, a few years after the end of its original mission, VMC was turned on again to obtain full-disk images of Mars to be used for outreach purposes. As VMC obtained more images, the scientific potential of the camera became evident, and in 2018 the camera was given an upgraded status of a new scientific instrument, with science goals in the field of Martian atmosphere meteorology. The wide Field of View of the camera combined with the orbit of Mars Express enable the acquisition of full-disk images of the planet showing different local times, which for a long time has been rare among orbital missions around Mars. The small data volume of images also allows videos that show the atmospheric dynamics of dust and cloud systems to be obtained. This paper is intended to be the new reference paper for VMC as a scientific instrument, and thus provides an overview of the updated procedures to plan, command and execute science observations of the Martian atmosphere. These observations produce valuable science data that is calibrated and distributed to the community for scientific use.
期刊介绍:
Planetary and Space Science publishes original articles as well as short communications (letters). Ground-based and space-borne instrumentation and laboratory simulation of solar system processes are included. The following fields of planetary and solar system research are covered:
• Celestial mechanics, including dynamical evolution of the solar system, gravitational captures and resonances, relativistic effects, tracking and dynamics
• Cosmochemistry and origin, including all aspects of the formation and initial physical and chemical evolution of the solar system
• Terrestrial planets and satellites, including the physics of the interiors, geology and morphology of the surfaces, tectonics, mineralogy and dating
• Outer planets and satellites, including formation and evolution, remote sensing at all wavelengths and in situ measurements
• Planetary atmospheres, including formation and evolution, circulation and meteorology, boundary layers, remote sensing and laboratory simulation
• Planetary magnetospheres and ionospheres, including origin of magnetic fields, magnetospheric plasma and radiation belts, and their interaction with the sun, the solar wind and satellites
• Small bodies, dust and rings, including asteroids, comets and zodiacal light and their interaction with the solar radiation and the solar wind
• Exobiology, including origin of life, detection of planetary ecosystems and pre-biological phenomena in the solar system and laboratory simulations
• Extrasolar systems, including the detection and/or the detectability of exoplanets and planetary systems, their formation and evolution, the physical and chemical properties of the exoplanets
• History of planetary and space research