针对多目标优化问题,通过补偿模糊逻辑帮助决策者阐明偏好接近模型

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"针对多目标优化问题,通过补偿模糊逻辑帮助决策者阐明偏好接近模型","authors":"","doi":"10.1016/j.knosys.2024.112524","DOIUrl":null,"url":null,"abstract":"<div><p>One of the main challenges in applying preference-based approaches to many-objective optimization problems is that decision makers (DMs) initially have only a vague notion of the solution they want and can obtain. In this paper, we propose an interactive approach that aids DMs in articulating a preference model in a progressive way. The quality of a solution is determined in terms of its “preference closeness” to an aspiration point, which is a subjective concept that can be outlined by the DM. Our proposal is based on compensatory fuzzy logic, which allows for the construction of predicates that are expressed in language that is close to natural. One main advantage is that the model can be optimized via metaheuristics, and we utilize an ant colony optimization algorithm for this. Our model complies with the principles of hybrid augmented intelligence, not only because the algorithm is enriched with knowledge from the DM, but also because the DM also learns the concept of “preference closeness” throughout the process. The proposed model is validated on benchmarks with five and 10 objective functions, and is compared with two state-of-the-art algorithms. Our approach allows for better convergence to the best compromise solutions. The advantages of our approach are supported by statistical tests of the results.</p></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aiding decision makers in articulating a preference closeness model through compensatory fuzzy logic for many-objective optimization problems\",\"authors\":\"\",\"doi\":\"10.1016/j.knosys.2024.112524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One of the main challenges in applying preference-based approaches to many-objective optimization problems is that decision makers (DMs) initially have only a vague notion of the solution they want and can obtain. In this paper, we propose an interactive approach that aids DMs in articulating a preference model in a progressive way. The quality of a solution is determined in terms of its “preference closeness” to an aspiration point, which is a subjective concept that can be outlined by the DM. Our proposal is based on compensatory fuzzy logic, which allows for the construction of predicates that are expressed in language that is close to natural. One main advantage is that the model can be optimized via metaheuristics, and we utilize an ant colony optimization algorithm for this. Our model complies with the principles of hybrid augmented intelligence, not only because the algorithm is enriched with knowledge from the DM, but also because the DM also learns the concept of “preference closeness” throughout the process. The proposed model is validated on benchmarks with five and 10 objective functions, and is compared with two state-of-the-art algorithms. Our approach allows for better convergence to the best compromise solutions. The advantages of our approach are supported by statistical tests of the results.</p></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705124011584\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124011584","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

将基于偏好的方法应用于多目标优化问题所面临的主要挑战之一是,决策者(DMs)最初对他们想要并能获得的解决方案只有一个模糊的概念。在本文中,我们提出了一种交互式方法,可帮助决策者逐步阐明偏好模型。解决方案的质量取决于其与愿望点的 "偏好接近度",这是一个可由 DM 概述的主观概念。我们的建议以补偿模糊逻辑为基础,可以构建用接近自然语言表达的谓词。该模型的一个主要优点是可以通过元启发式方法进行优化,我们为此使用了蚁群优化算法。我们的模型符合混合增强智能的原则,这不仅是因为算法从 DM 中丰富了知识,还因为 DM 在整个过程中也学习了 "偏好接近度 "的概念。我们在具有 5 个和 10 个目标函数的基准上对所提出的模型进行了验证,并与两种最先进的算法进行了比较。我们的方法能更好地收敛到最佳折中方案。对结果的统计检验证明了我们方法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aiding decision makers in articulating a preference closeness model through compensatory fuzzy logic for many-objective optimization problems

One of the main challenges in applying preference-based approaches to many-objective optimization problems is that decision makers (DMs) initially have only a vague notion of the solution they want and can obtain. In this paper, we propose an interactive approach that aids DMs in articulating a preference model in a progressive way. The quality of a solution is determined in terms of its “preference closeness” to an aspiration point, which is a subjective concept that can be outlined by the DM. Our proposal is based on compensatory fuzzy logic, which allows for the construction of predicates that are expressed in language that is close to natural. One main advantage is that the model can be optimized via metaheuristics, and we utilize an ant colony optimization algorithm for this. Our model complies with the principles of hybrid augmented intelligence, not only because the algorithm is enriched with knowledge from the DM, but also because the DM also learns the concept of “preference closeness” throughout the process. The proposed model is validated on benchmarks with five and 10 objective functions, and is compared with two state-of-the-art algorithms. Our approach allows for better convergence to the best compromise solutions. The advantages of our approach are supported by statistical tests of the results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信