利用综合遥感技术和机器学习监测马普托湾的海草草甸

IF 2.1 4区 环境科学与生态学 Q3 ECOLOGY
M. Amone-Mabuto , S. Bandeira , J. Hollander , D. Hume , J. Campira , JB Adams
{"title":"利用综合遥感技术和机器学习监测马普托湾的海草草甸","authors":"M. Amone-Mabuto ,&nbsp;S. Bandeira ,&nbsp;J. Hollander ,&nbsp;D. Hume ,&nbsp;J. Campira ,&nbsp;JB Adams","doi":"10.1016/j.rsma.2024.103816","DOIUrl":null,"url":null,"abstract":"<div><p>Seagrass meadows are one of the most productive and valuable ecosystems on the planet. Monitoring seagrass meadows is essential to understand how these habitats change, and to develop better management and conservation practices. This study integrated satellite imagery from Sentinel-2 and Unmanned Aerial Vehicles (UAV) using machine learning to provide a consistent classification approach for monitoring seagrass in Maputo Bay, southern Mozambique. Sentinel-2 imagery was used to map seagrass extent and changes in Maputo Bay. The UAV systems were used to map seagrass at species level and biomass. All three algorithms tested in the ArcGIS environment could detect seagrass with high producer accuracy and Kappa coefficient. The area of seagrass in Maputo Bay decreased by 33.4 % between 1991 and 2023, with a decreasing trend of 0.48 km<sup>2</sup>/yr. A zonation pattern was observed for <em>Oceana serrulata</em> and <em>Zostera capensis</em> from the UAV imagery. The small and narrow leaved species (<em>Z. capensis</em>) occurred in the intertidal zone replaced by the broadleaved species (<em>O. serrulata</em>) in the subtidal. The total average aboveground biomass was 33.2 kg dry weight for the mapped area. The results of this study will guide implementation of combined satellite and UAV imagery with machine learning techniques for seagrass monitoring and restoration in Mozambique.</p></div>","PeriodicalId":21070,"journal":{"name":"Regional Studies in Marine Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352485524004493/pdfft?md5=da621cf7a3eaafa0d32bbf7f6b9ef42b&pid=1-s2.0-S2352485524004493-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Monitoring seagrass meadows in Maputo Bay using integrated remote sensing techniques and machine learning\",\"authors\":\"M. Amone-Mabuto ,&nbsp;S. Bandeira ,&nbsp;J. Hollander ,&nbsp;D. Hume ,&nbsp;J. Campira ,&nbsp;JB Adams\",\"doi\":\"10.1016/j.rsma.2024.103816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Seagrass meadows are one of the most productive and valuable ecosystems on the planet. Monitoring seagrass meadows is essential to understand how these habitats change, and to develop better management and conservation practices. This study integrated satellite imagery from Sentinel-2 and Unmanned Aerial Vehicles (UAV) using machine learning to provide a consistent classification approach for monitoring seagrass in Maputo Bay, southern Mozambique. Sentinel-2 imagery was used to map seagrass extent and changes in Maputo Bay. The UAV systems were used to map seagrass at species level and biomass. All three algorithms tested in the ArcGIS environment could detect seagrass with high producer accuracy and Kappa coefficient. The area of seagrass in Maputo Bay decreased by 33.4 % between 1991 and 2023, with a decreasing trend of 0.48 km<sup>2</sup>/yr. A zonation pattern was observed for <em>Oceana serrulata</em> and <em>Zostera capensis</em> from the UAV imagery. The small and narrow leaved species (<em>Z. capensis</em>) occurred in the intertidal zone replaced by the broadleaved species (<em>O. serrulata</em>) in the subtidal. The total average aboveground biomass was 33.2 kg dry weight for the mapped area. The results of this study will guide implementation of combined satellite and UAV imagery with machine learning techniques for seagrass monitoring and restoration in Mozambique.</p></div>\",\"PeriodicalId\":21070,\"journal\":{\"name\":\"Regional Studies in Marine Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352485524004493/pdfft?md5=da621cf7a3eaafa0d32bbf7f6b9ef42b&pid=1-s2.0-S2352485524004493-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regional Studies in Marine Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352485524004493\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regional Studies in Marine Science","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352485524004493","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

海草草甸是地球上最具生产力和价值的生态系统之一。监测海草草甸对于了解这些栖息地的变化以及制定更好的管理和保护措施至关重要。这项研究利用机器学习技术整合了哨兵-2 号卫星和无人机(UAV)的卫星图像,为监测莫桑比克南部马普托湾的海草提供了一致的分类方法。哨兵-2 图像用于绘制马普托湾的海草范围和变化图。无人飞行器系统用于绘制海草物种和生物量地图。在 ArcGIS 环境中测试的所有三种算法都能以较高的制作精度和 Kappa 系数检测到海草。从 1991 年到 2023 年,马普托湾的海草面积减少了 33.4%,下降趋势为 0.48 平方公里/年。从无人机图像中观察到 Oceana serrulata 和 Zostera capensis 的分区模式。小而窄叶的物种(Z. capensis)出现在潮间带,而阔叶物种(O. serrulata)则出现在潮下带。测绘区域的总平均地上生物量为 33.2 千克干重。这项研究的结果将指导卫星和无人机图像与机器学习技术相结合,用于莫桑比克的海草监测和恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monitoring seagrass meadows in Maputo Bay using integrated remote sensing techniques and machine learning

Seagrass meadows are one of the most productive and valuable ecosystems on the planet. Monitoring seagrass meadows is essential to understand how these habitats change, and to develop better management and conservation practices. This study integrated satellite imagery from Sentinel-2 and Unmanned Aerial Vehicles (UAV) using machine learning to provide a consistent classification approach for monitoring seagrass in Maputo Bay, southern Mozambique. Sentinel-2 imagery was used to map seagrass extent and changes in Maputo Bay. The UAV systems were used to map seagrass at species level and biomass. All three algorithms tested in the ArcGIS environment could detect seagrass with high producer accuracy and Kappa coefficient. The area of seagrass in Maputo Bay decreased by 33.4 % between 1991 and 2023, with a decreasing trend of 0.48 km2/yr. A zonation pattern was observed for Oceana serrulata and Zostera capensis from the UAV imagery. The small and narrow leaved species (Z. capensis) occurred in the intertidal zone replaced by the broadleaved species (O. serrulata) in the subtidal. The total average aboveground biomass was 33.2 kg dry weight for the mapped area. The results of this study will guide implementation of combined satellite and UAV imagery with machine learning techniques for seagrass monitoring and restoration in Mozambique.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Regional Studies in Marine Science
Regional Studies in Marine Science Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
3.90
自引率
4.80%
发文量
336
审稿时长
69 days
期刊介绍: REGIONAL STUDIES IN MARINE SCIENCE will publish scientifically sound papers on regional aspects of maritime and marine resources in estuaries, coastal zones, continental shelf, the seas and oceans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信