{"title":"小表征的积分 p-adic 非阿贝尔霍奇理论","authors":"Yu Min , Yupeng Wang","doi":"10.1016/j.aim.2024.109950","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>X</mi></math></span> be a smooth <em>p</em>-adic formal scheme over <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span> with rigid generic fiber <em>X</em>. In this paper, we construct a new integral period sheaf <span><math><mi>O</mi><msubsup><mrow><mover><mrow><mi>C</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>pd</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> on <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>pro</mi><mover><mrow><mi>e</mi></mrow><mrow><mo>´</mo></mrow></mover><mi>t</mi></mrow></msub></math></span> and use it to establish an integral <em>p</em>-adic Simpson correspondence for small <span><math><msubsup><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>X</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>-representations on <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>pro</mi><mover><mrow><mi>e</mi></mrow><mrow><mo>´</mo></mrow></mover><mi>t</mi></mrow></msub></math></span> and small Higgs bundles on <span><math><msub><mrow><mi>X</mi></mrow><mrow><mover><mrow><mi>e</mi></mrow><mrow><mo>´</mo></mrow></mover><mi>t</mi></mrow></msub></math></span>, which recovers rational <em>p</em>-adic Simpson correspondence for small coefficients after inverting <em>p</em> (at least in the good reduction case). Moreover, for a small <span><math><msubsup><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>X</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>-representation <span><math><mi>L</mi></math></span> with induced Higgs bundle <span><math><mo>(</mo><mi>H</mi><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>)</mo></math></span>, we provide a natural morphism <span><math><mrow><mi>HIG</mi></mrow><mo>(</mo><mi>H</mi><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>)</mo><mo>→</mo><mi>R</mi><msub><mrow><mi>ν</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mi>L</mi></math></span> with a bounded <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-torsion cofiber. Finally, we shall use this natural map to study an analogue of Deligne–Illusie decomposition with coefficients in small <span><math><msubsup><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>X</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>-representations.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integral p-adic non-abelian Hodge theory for small representations\",\"authors\":\"Yu Min , Yupeng Wang\",\"doi\":\"10.1016/j.aim.2024.109950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>X</mi></math></span> be a smooth <em>p</em>-adic formal scheme over <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span> with rigid generic fiber <em>X</em>. In this paper, we construct a new integral period sheaf <span><math><mi>O</mi><msubsup><mrow><mover><mrow><mi>C</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>pd</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> on <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>pro</mi><mover><mrow><mi>e</mi></mrow><mrow><mo>´</mo></mrow></mover><mi>t</mi></mrow></msub></math></span> and use it to establish an integral <em>p</em>-adic Simpson correspondence for small <span><math><msubsup><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>X</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>-representations on <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>pro</mi><mover><mrow><mi>e</mi></mrow><mrow><mo>´</mo></mrow></mover><mi>t</mi></mrow></msub></math></span> and small Higgs bundles on <span><math><msub><mrow><mi>X</mi></mrow><mrow><mover><mrow><mi>e</mi></mrow><mrow><mo>´</mo></mrow></mover><mi>t</mi></mrow></msub></math></span>, which recovers rational <em>p</em>-adic Simpson correspondence for small coefficients after inverting <em>p</em> (at least in the good reduction case). Moreover, for a small <span><math><msubsup><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>X</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>-representation <span><math><mi>L</mi></math></span> with induced Higgs bundle <span><math><mo>(</mo><mi>H</mi><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>)</mo></math></span>, we provide a natural morphism <span><math><mrow><mi>HIG</mi></mrow><mo>(</mo><mi>H</mi><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>)</mo><mo>→</mo><mi>R</mi><msub><mrow><mi>ν</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mi>L</mi></math></span> with a bounded <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-torsion cofiber. Finally, we shall use this natural map to study an analogue of Deligne–Illusie decomposition with coefficients in small <span><math><msubsup><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>X</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>-representations.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004651\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004651","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Integral p-adic non-abelian Hodge theory for small representations
Let be a smooth p-adic formal scheme over with rigid generic fiber X. In this paper, we construct a new integral period sheaf on and use it to establish an integral p-adic Simpson correspondence for small -representations on and small Higgs bundles on , which recovers rational p-adic Simpson correspondence for small coefficients after inverting p (at least in the good reduction case). Moreover, for a small -representation with induced Higgs bundle , we provide a natural morphism with a bounded -torsion cofiber. Finally, we shall use this natural map to study an analogue of Deligne–Illusie decomposition with coefficients in small -representations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.