小表征的积分 p-adic 非阿贝尔霍奇理论

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yu Min , Yupeng Wang
{"title":"小表征的积分 p-adic 非阿贝尔霍奇理论","authors":"Yu Min ,&nbsp;Yupeng Wang","doi":"10.1016/j.aim.2024.109950","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>X</mi></math></span> be a smooth <em>p</em>-adic formal scheme over <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span> with rigid generic fiber <em>X</em>. In this paper, we construct a new integral period sheaf <span><math><mi>O</mi><msubsup><mrow><mover><mrow><mi>C</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>pd</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> on <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>pro</mi><mover><mrow><mi>e</mi></mrow><mrow><mo>´</mo></mrow></mover><mi>t</mi></mrow></msub></math></span> and use it to establish an integral <em>p</em>-adic Simpson correspondence for small <span><math><msubsup><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>X</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>-representations on <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>pro</mi><mover><mrow><mi>e</mi></mrow><mrow><mo>´</mo></mrow></mover><mi>t</mi></mrow></msub></math></span> and small Higgs bundles on <span><math><msub><mrow><mi>X</mi></mrow><mrow><mover><mrow><mi>e</mi></mrow><mrow><mo>´</mo></mrow></mover><mi>t</mi></mrow></msub></math></span>, which recovers rational <em>p</em>-adic Simpson correspondence for small coefficients after inverting <em>p</em> (at least in the good reduction case). Moreover, for a small <span><math><msubsup><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>X</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>-representation <span><math><mi>L</mi></math></span> with induced Higgs bundle <span><math><mo>(</mo><mi>H</mi><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>)</mo></math></span>, we provide a natural morphism <span><math><mrow><mi>HIG</mi></mrow><mo>(</mo><mi>H</mi><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>)</mo><mo>→</mo><mi>R</mi><msub><mrow><mi>ν</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mi>L</mi></math></span> with a bounded <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-torsion cofiber. Finally, we shall use this natural map to study an analogue of Deligne–Illusie decomposition with coefficients in small <span><math><msubsup><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>X</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>-representations.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integral p-adic non-abelian Hodge theory for small representations\",\"authors\":\"Yu Min ,&nbsp;Yupeng Wang\",\"doi\":\"10.1016/j.aim.2024.109950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>X</mi></math></span> be a smooth <em>p</em>-adic formal scheme over <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span> with rigid generic fiber <em>X</em>. In this paper, we construct a new integral period sheaf <span><math><mi>O</mi><msubsup><mrow><mover><mrow><mi>C</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>pd</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> on <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>pro</mi><mover><mrow><mi>e</mi></mrow><mrow><mo>´</mo></mrow></mover><mi>t</mi></mrow></msub></math></span> and use it to establish an integral <em>p</em>-adic Simpson correspondence for small <span><math><msubsup><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>X</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>-representations on <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>pro</mi><mover><mrow><mi>e</mi></mrow><mrow><mo>´</mo></mrow></mover><mi>t</mi></mrow></msub></math></span> and small Higgs bundles on <span><math><msub><mrow><mi>X</mi></mrow><mrow><mover><mrow><mi>e</mi></mrow><mrow><mo>´</mo></mrow></mover><mi>t</mi></mrow></msub></math></span>, which recovers rational <em>p</em>-adic Simpson correspondence for small coefficients after inverting <em>p</em> (at least in the good reduction case). Moreover, for a small <span><math><msubsup><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>X</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>-representation <span><math><mi>L</mi></math></span> with induced Higgs bundle <span><math><mo>(</mo><mi>H</mi><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>)</mo></math></span>, we provide a natural morphism <span><math><mrow><mi>HIG</mi></mrow><mo>(</mo><mi>H</mi><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>)</mo><mo>→</mo><mi>R</mi><msub><mrow><mi>ν</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mi>L</mi></math></span> with a bounded <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-torsion cofiber. Finally, we shall use this natural map to study an analogue of Deligne–Illusie decomposition with coefficients in small <span><math><msubsup><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>X</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>-representations.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004651\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004651","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们在 Xproe´t 上构造了一个新的积分周期舍弗 OCˆpd+,并用它为 Xproe´t 上的小 OˆX+ 表示和 Xe´t 上的小希格斯束建立了一个积分 p-adic Simpson 对应关系,在反转 p 之后(至少在良好的还原情况下)恢复了小系数的理性 p-adic Simpson 对应关系。此外,对于具有诱导希格斯束(H,θH)的小 OˆX+ 表示 L,我们提供了一个具有有界 p∞ 扭转共纤的自然态射 HIG(H,θH)→Rν⁎L。最后,我们将利用这一自然映射来研究德利涅-伊卢西分解的一个类似方法,其系数为小 OˆX+ 表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integral p-adic non-abelian Hodge theory for small representations

Let X be a smooth p-adic formal scheme over OC with rigid generic fiber X. In this paper, we construct a new integral period sheaf OCˆpd+ on Xproe´t and use it to establish an integral p-adic Simpson correspondence for small OˆX+-representations on Xproe´t and small Higgs bundles on Xe´t, which recovers rational p-adic Simpson correspondence for small coefficients after inverting p (at least in the good reduction case). Moreover, for a small OˆX+-representation L with induced Higgs bundle (H,θH), we provide a natural morphism HIG(H,θH)RνL with a bounded p-torsion cofiber. Finally, we shall use this natural map to study an analogue of Deligne–Illusie decomposition with coefficients in small OˆX+-representations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信