motivic 和 Real bordism 中的同调切片谱序列

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Christian Carrick , Michael A. Hill , Douglas C. Ravenel
{"title":"motivic 和 Real bordism 中的同调切片谱序列","authors":"Christian Carrick ,&nbsp;Michael A. Hill ,&nbsp;Douglas C. Ravenel","doi":"10.1016/j.aim.2024.109955","DOIUrl":null,"url":null,"abstract":"<div><p>For a motivic spectrum <span><math><mi>E</mi><mo>∈</mo><mrow><mi>SH</mi></mrow><mo>(</mo><mi>k</mi><mo>)</mo></math></span>, let <span><math><mi>Γ</mi><mo>(</mo><mi>E</mi><mo>)</mo></math></span> denote the global sections spectrum, where <em>E</em> is viewed as a sheaf of spectra on <span><math><msub><mrow><mi>Sm</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>. Voevodsky's slice filtration determines a spectral sequence converging to the homotopy groups of <span><math><mi>Γ</mi><mo>(</mo><mi>E</mi><mo>)</mo></math></span>. In this paper, we introduce a spectral sequence converging instead to the mod 2 homology of <span><math><mi>Γ</mi><mo>(</mo><mi>E</mi><mo>)</mo></math></span> and study the case <span><math><mi>E</mi><mo>=</mo><mi>B</mi><mi>P</mi><mi>G</mi><mi>L</mi><mo>〈</mo><mi>m</mi><mo>〉</mo></math></span> for <span><math><mi>k</mi><mo>=</mo><mi>R</mi></math></span> in detail. We show that this spectral sequence contains the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msub></math></span>-comodule algebra <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mo>□</mo></mrow><mrow><mi>A</mi><msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msub></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> as permanent cycles, and we determine a family of differentials interpolating between <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mo>□</mo></mrow><mrow><mi>A</mi><msub><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msub></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mo>□</mo></mrow><mrow><mi>A</mi><msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msub></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Using this, we compute the spectral sequence completely for <span><math><mi>m</mi><mo>≤</mo><mn>3</mn></math></span>.</p><p>In the height 2 case, the Betti realization of <span><math><mi>B</mi><mi>P</mi><mi>G</mi><mi>L</mi><mo>〈</mo><mn>2</mn><mo>〉</mo></math></span> is the <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-spectrum <span><math><mi>B</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>〈</mo><mn>2</mn><mo>〉</mo></math></span>, a form of which was shown by Hill and Meier to be an equivariant model for <span><math><msub><mrow><mi>tmf</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mn>3</mn><mo>)</mo></math></span>. Our spectral sequence therefore gives a computation of the comodule algebra <span><math><msub><mrow><mi>H</mi></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mi>tmf</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mn>3</mn><mo>)</mo></math></span>. As a consequence, we deduce a new (2-local) Wood-type splitting<span><span><span><math><mrow><mi>tmf</mi></mrow><mo>∧</mo><mi>X</mi><mo>≃</mo><msub><mrow><mi>tmf</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mn>3</mn><mo>)</mo></math></span></span></span> of tmf-modules predicted by Davis and Mahowald, for <em>X</em> a certain 10-cell complex.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0001870824004705/pdfft?md5=5881a17b5ae2bf26359dfa18561bd41c&pid=1-s2.0-S0001870824004705-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The homological slice spectral sequence in motivic and Real bordism\",\"authors\":\"Christian Carrick ,&nbsp;Michael A. Hill ,&nbsp;Douglas C. Ravenel\",\"doi\":\"10.1016/j.aim.2024.109955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a motivic spectrum <span><math><mi>E</mi><mo>∈</mo><mrow><mi>SH</mi></mrow><mo>(</mo><mi>k</mi><mo>)</mo></math></span>, let <span><math><mi>Γ</mi><mo>(</mo><mi>E</mi><mo>)</mo></math></span> denote the global sections spectrum, where <em>E</em> is viewed as a sheaf of spectra on <span><math><msub><mrow><mi>Sm</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>. Voevodsky's slice filtration determines a spectral sequence converging to the homotopy groups of <span><math><mi>Γ</mi><mo>(</mo><mi>E</mi><mo>)</mo></math></span>. In this paper, we introduce a spectral sequence converging instead to the mod 2 homology of <span><math><mi>Γ</mi><mo>(</mo><mi>E</mi><mo>)</mo></math></span> and study the case <span><math><mi>E</mi><mo>=</mo><mi>B</mi><mi>P</mi><mi>G</mi><mi>L</mi><mo>〈</mo><mi>m</mi><mo>〉</mo></math></span> for <span><math><mi>k</mi><mo>=</mo><mi>R</mi></math></span> in detail. We show that this spectral sequence contains the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msub></math></span>-comodule algebra <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mo>□</mo></mrow><mrow><mi>A</mi><msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msub></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> as permanent cycles, and we determine a family of differentials interpolating between <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mo>□</mo></mrow><mrow><mi>A</mi><msub><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msub></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mo>□</mo></mrow><mrow><mi>A</mi><msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msub></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Using this, we compute the spectral sequence completely for <span><math><mi>m</mi><mo>≤</mo><mn>3</mn></math></span>.</p><p>In the height 2 case, the Betti realization of <span><math><mi>B</mi><mi>P</mi><mi>G</mi><mi>L</mi><mo>〈</mo><mn>2</mn><mo>〉</mo></math></span> is the <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-spectrum <span><math><mi>B</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>〈</mo><mn>2</mn><mo>〉</mo></math></span>, a form of which was shown by Hill and Meier to be an equivariant model for <span><math><msub><mrow><mi>tmf</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mn>3</mn><mo>)</mo></math></span>. Our spectral sequence therefore gives a computation of the comodule algebra <span><math><msub><mrow><mi>H</mi></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mi>tmf</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mn>3</mn><mo>)</mo></math></span>. As a consequence, we deduce a new (2-local) Wood-type splitting<span><span><span><math><mrow><mi>tmf</mi></mrow><mo>∧</mo><mi>X</mi><mo>≃</mo><msub><mrow><mi>tmf</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mn>3</mn><mo>)</mo></math></span></span></span> of tmf-modules predicted by Davis and Mahowald, for <em>X</em> a certain 10-cell complex.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004705/pdfft?md5=5881a17b5ae2bf26359dfa18561bd41c&pid=1-s2.0-S0001870824004705-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004705\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004705","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对于一个动机谱 E∈SH(k),让Γ(E) 表示全局剖面谱,其中 E 被视为 Smk 上的一个谱片。Voevodsky 的切片滤波决定了收敛于 Γ(E) 同调群的谱序列。在本文中,我们引入了收敛于 Γ(E) 的 mod 2 同调的谱序列,并详细研究了 k=R 时 E=BPGL〈m〉的情况。我们证明这个谱序列包含作为永久循环的 A⁎-omodule 代数 A⁎□A(m)⁎F2,并确定了介于 A⁎□A(0)⁎F2 和 A⁎□A(m)⁎F2 之间的微分族。在高度 2 的情况下,BPGL〈2〉的贝蒂实现是 C2 谱 BPR〈2〉,希尔和迈尔证明了它的一种形式是 tmf1(3) 的等变模型。因此,我们的谱序列给出了逗点代数 H⁎tmf0(3)的计算结果。因此,我们推导出了戴维斯和马霍瓦尔德预测的 tmf 模块的新的(2-局部)伍德型分裂 tmf∧X≃tmf0(3) ,X 是某个 10 单元复数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The homological slice spectral sequence in motivic and Real bordism

For a motivic spectrum ESH(k), let Γ(E) denote the global sections spectrum, where E is viewed as a sheaf of spectra on Smk. Voevodsky's slice filtration determines a spectral sequence converging to the homotopy groups of Γ(E). In this paper, we introduce a spectral sequence converging instead to the mod 2 homology of Γ(E) and study the case E=BPGLm for k=R in detail. We show that this spectral sequence contains the A-comodule algebra AA(m)F2 as permanent cycles, and we determine a family of differentials interpolating between AA(0)F2 and AA(m)F2. Using this, we compute the spectral sequence completely for m3.

In the height 2 case, the Betti realization of BPGL2 is the C2-spectrum BPR2, a form of which was shown by Hill and Meier to be an equivariant model for tmf1(3). Our spectral sequence therefore gives a computation of the comodule algebra Htmf0(3). As a consequence, we deduce a new (2-local) Wood-type splittingtmfXtmf0(3) of tmf-modules predicted by Davis and Mahowald, for X a certain 10-cell complex.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信