Ziyu Yang , Tao Sun , Pengli Wang , Lina Bai , Ye Wu , Tongtong Wang , Xiaoyan Li , Yutong Cheng , Suli Zhang , Huirong Liu
{"title":"冠心病患者 AT1 受体自身抗体的功能亚类","authors":"Ziyu Yang , Tao Sun , Pengli Wang , Lina Bai , Ye Wu , Tongtong Wang , Xiaoyan Li , Yutong Cheng , Suli Zhang , Huirong Liu","doi":"10.1016/j.bcp.2024.116546","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, the identification of autoantibodies (AT1-AA) targeting the second extracellular loop of angiotensin II type 1 receptor (AT1R-ECII) in patients with coronary heart disease (CHD) offers a novel perspective on the interplay between immunity and cardiovascular disease. However, much remains unknown regarding the functional diversity of AT1-AA. In this study, we measured the levels of AT1-AA in the sera of 306 CHD patients and purified AT1-AA from patient’s sera (n = 127). The subclasses of AT1-AA were categorized based on their impact on intracellular calcium ([Ca<sup>2+</sup>]<sub>i</sub>) levels in mouse arterial smooth muscle cells (MASMCs). Our findings revealed 4 distinct [Ca<sup>2+</sup>]<sub>i</sub> response patterns indicating the existence of 4 functional subclasses named H1-, H2-, H3-, and H4-AT1-AA. The correlation analysis demonstrated a positive association between H1-AT1-AA and endogenous coagulation, as well as between H2-AT1-AA and exogenous coagulation; no significant correlation was observed between H3-AT1-AA and the indicators we analyzed. Conversely, H4-AT1-AA exhibited a negative correlation with both leukocyte number and bile acid levels. Logistic regression analysis showed that H2-AT1-AA possessed predictive value for severe CHD. Furthermore, <em>in vitro</em> experiments indicated that both H1- and H2-AT1-AA exerted cytotoxic effects on MASMCs, while H4-AT1-AA increased cell viability. Additionally, an AT1-AA-positive rat model was established by subcutaneously injecting with AT1R-ECII peptide, which produced four similar functional subclasses of rat AT1-AA upon active immunization. This study suggested that classifying different functional subclasses of AT1-AAs can facilitate more accurate evaluation of the condition and prognosis in patients with CHD, thereby providing a novel basis for clinical diagnosis and treatment.</p></div>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":"229 ","pages":"Article 116546"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S000629522400546X/pdfft?md5=e6d0c89b13fb97544107aacc2703f6b1&pid=1-s2.0-S000629522400546X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The functional subclasses of AT1 receptor autoantibody in patients with coronary heart disease\",\"authors\":\"Ziyu Yang , Tao Sun , Pengli Wang , Lina Bai , Ye Wu , Tongtong Wang , Xiaoyan Li , Yutong Cheng , Suli Zhang , Huirong Liu\",\"doi\":\"10.1016/j.bcp.2024.116546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, the identification of autoantibodies (AT1-AA) targeting the second extracellular loop of angiotensin II type 1 receptor (AT1R-ECII) in patients with coronary heart disease (CHD) offers a novel perspective on the interplay between immunity and cardiovascular disease. However, much remains unknown regarding the functional diversity of AT1-AA. In this study, we measured the levels of AT1-AA in the sera of 306 CHD patients and purified AT1-AA from patient’s sera (n = 127). The subclasses of AT1-AA were categorized based on their impact on intracellular calcium ([Ca<sup>2+</sup>]<sub>i</sub>) levels in mouse arterial smooth muscle cells (MASMCs). Our findings revealed 4 distinct [Ca<sup>2+</sup>]<sub>i</sub> response patterns indicating the existence of 4 functional subclasses named H1-, H2-, H3-, and H4-AT1-AA. The correlation analysis demonstrated a positive association between H1-AT1-AA and endogenous coagulation, as well as between H2-AT1-AA and exogenous coagulation; no significant correlation was observed between H3-AT1-AA and the indicators we analyzed. Conversely, H4-AT1-AA exhibited a negative correlation with both leukocyte number and bile acid levels. Logistic regression analysis showed that H2-AT1-AA possessed predictive value for severe CHD. Furthermore, <em>in vitro</em> experiments indicated that both H1- and H2-AT1-AA exerted cytotoxic effects on MASMCs, while H4-AT1-AA increased cell viability. Additionally, an AT1-AA-positive rat model was established by subcutaneously injecting with AT1R-ECII peptide, which produced four similar functional subclasses of rat AT1-AA upon active immunization. This study suggested that classifying different functional subclasses of AT1-AAs can facilitate more accurate evaluation of the condition and prognosis in patients with CHD, thereby providing a novel basis for clinical diagnosis and treatment.</p></div>\",\"PeriodicalId\":8806,\"journal\":{\"name\":\"Biochemical pharmacology\",\"volume\":\"229 \",\"pages\":\"Article 116546\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S000629522400546X/pdfft?md5=e6d0c89b13fb97544107aacc2703f6b1&pid=1-s2.0-S000629522400546X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000629522400546X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000629522400546X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
The functional subclasses of AT1 receptor autoantibody in patients with coronary heart disease
Recently, the identification of autoantibodies (AT1-AA) targeting the second extracellular loop of angiotensin II type 1 receptor (AT1R-ECII) in patients with coronary heart disease (CHD) offers a novel perspective on the interplay between immunity and cardiovascular disease. However, much remains unknown regarding the functional diversity of AT1-AA. In this study, we measured the levels of AT1-AA in the sera of 306 CHD patients and purified AT1-AA from patient’s sera (n = 127). The subclasses of AT1-AA were categorized based on their impact on intracellular calcium ([Ca2+]i) levels in mouse arterial smooth muscle cells (MASMCs). Our findings revealed 4 distinct [Ca2+]i response patterns indicating the existence of 4 functional subclasses named H1-, H2-, H3-, and H4-AT1-AA. The correlation analysis demonstrated a positive association between H1-AT1-AA and endogenous coagulation, as well as between H2-AT1-AA and exogenous coagulation; no significant correlation was observed between H3-AT1-AA and the indicators we analyzed. Conversely, H4-AT1-AA exhibited a negative correlation with both leukocyte number and bile acid levels. Logistic regression analysis showed that H2-AT1-AA possessed predictive value for severe CHD. Furthermore, in vitro experiments indicated that both H1- and H2-AT1-AA exerted cytotoxic effects on MASMCs, while H4-AT1-AA increased cell viability. Additionally, an AT1-AA-positive rat model was established by subcutaneously injecting with AT1R-ECII peptide, which produced four similar functional subclasses of rat AT1-AA upon active immunization. This study suggested that classifying different functional subclasses of AT1-AAs can facilitate more accurate evaluation of the condition and prognosis in patients with CHD, thereby providing a novel basis for clinical diagnosis and treatment.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.