{"title":"考虑周转时间的不确定性,对船舶调度和空集装箱重新定位进行综合优化","authors":"","doi":"10.1016/j.cie.2024.110566","DOIUrl":null,"url":null,"abstract":"<div><p>The global trade disproportion results in the accumulation of containers in import-dominated ports and shortages in export-dominated ports, causing congestion and high freight costs, thus hindering maritime shipping economy development. To address these issues, this study develops a stochastic programming model considering uncertain container turnover times. The model integrates decisions for vessel deployment and empty container repositioning over multiple planning periods through a two-stage decision process, aiming to minimize the total cost, including vessel deployment, container leasing, and penalty costs for unfulfilled demand. By formulating the scenario selection problem as a <em>p-median problem</em>, we effectively reduce the model size. We propose an accelerated Benders decomposition algorithm which leverages the independence of sub-problems in the second stage to enable parallel computation. Numerical experiments show that our Benders decomposition algorithm improves solution speed by over 63% compared to the Gurobi optimization solver. Furthermore, our integrated optimization approach proves to be more cost-effective than the reactive method used by shipping lines, achieving an average cost savings of 0.72%. Additionally, our method of constructing turnover time scenarios to address uncertainty saves approximately 0.45% in costs compared to using the probability distribution of container turnover time.</p></div>","PeriodicalId":55220,"journal":{"name":"Computers & Industrial Engineering","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated optimization of vessel dispatching and empty container repositioning considering turnover time uncertainty\",\"authors\":\"\",\"doi\":\"10.1016/j.cie.2024.110566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The global trade disproportion results in the accumulation of containers in import-dominated ports and shortages in export-dominated ports, causing congestion and high freight costs, thus hindering maritime shipping economy development. To address these issues, this study develops a stochastic programming model considering uncertain container turnover times. The model integrates decisions for vessel deployment and empty container repositioning over multiple planning periods through a two-stage decision process, aiming to minimize the total cost, including vessel deployment, container leasing, and penalty costs for unfulfilled demand. By formulating the scenario selection problem as a <em>p-median problem</em>, we effectively reduce the model size. We propose an accelerated Benders decomposition algorithm which leverages the independence of sub-problems in the second stage to enable parallel computation. Numerical experiments show that our Benders decomposition algorithm improves solution speed by over 63% compared to the Gurobi optimization solver. Furthermore, our integrated optimization approach proves to be more cost-effective than the reactive method used by shipping lines, achieving an average cost savings of 0.72%. Additionally, our method of constructing turnover time scenarios to address uncertainty saves approximately 0.45% in costs compared to using the probability distribution of container turnover time.</p></div>\",\"PeriodicalId\":55220,\"journal\":{\"name\":\"Computers & Industrial Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Industrial Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360835224006879\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Industrial Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360835224006879","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Integrated optimization of vessel dispatching and empty container repositioning considering turnover time uncertainty
The global trade disproportion results in the accumulation of containers in import-dominated ports and shortages in export-dominated ports, causing congestion and high freight costs, thus hindering maritime shipping economy development. To address these issues, this study develops a stochastic programming model considering uncertain container turnover times. The model integrates decisions for vessel deployment and empty container repositioning over multiple planning periods through a two-stage decision process, aiming to minimize the total cost, including vessel deployment, container leasing, and penalty costs for unfulfilled demand. By formulating the scenario selection problem as a p-median problem, we effectively reduce the model size. We propose an accelerated Benders decomposition algorithm which leverages the independence of sub-problems in the second stage to enable parallel computation. Numerical experiments show that our Benders decomposition algorithm improves solution speed by over 63% compared to the Gurobi optimization solver. Furthermore, our integrated optimization approach proves to be more cost-effective than the reactive method used by shipping lines, achieving an average cost savings of 0.72%. Additionally, our method of constructing turnover time scenarios to address uncertainty saves approximately 0.45% in costs compared to using the probability distribution of container turnover time.
期刊介绍:
Computers & Industrial Engineering (CAIE) is dedicated to researchers, educators, and practitioners in industrial engineering and related fields. Pioneering the integration of computers in research, education, and practice, industrial engineering has evolved to make computers and electronic communication integral to its domain. CAIE publishes original contributions focusing on the development of novel computerized methodologies to address industrial engineering problems. It also highlights the applications of these methodologies to issues within the broader industrial engineering and associated communities. The journal actively encourages submissions that push the boundaries of fundamental theories and concepts in industrial engineering techniques.