Jun Wang , Mohan Wang , Yang Wu , Jie Zhou , Chun Chen , Di Wang , Qiong-Hua Wang
{"title":"基于球面衍射的超宽视角全息显示系统","authors":"Jun Wang , Mohan Wang , Yang Wu , Jie Zhou , Chun Chen , Di Wang , Qiong-Hua Wang","doi":"10.1016/j.displa.2024.102839","DOIUrl":null,"url":null,"abstract":"<div><p>In the field of holographic displays, achieving a large viewing angle (LVA) has long been an essential and formidable challenge due to the limited diffraction angle of planar spatial light modulators (SLMs). Spherical holography, which allows observation from all perspectives, represents a practical approach to achieve the LVA. However, the physical limitations of commercial SLMs constrain direct implementation, making the realization of spherical holographic displays almost impractical and thus hindering technological advancement. This paper introduces an optical solution for spherical holographic display system, enabling the accurate reproduction of ultra-wide viewing angles and large objects. Our system utilizes a novel technique involving a convex parabolic mirror to convert an incident plane wave into a spherical wave. This innovative strategy permits the use of a planar SLM to create a 360°spherical holographic display. Additionally, we address the sampling issue for generating spherical holograms by constraining the point spread function (PSF), reducing the number of samples, and adapting it for visible light. Numerical simulations and optical experiments validate our success in achieving an ultra-wide viewing angle with a 360°horizontal angle and an 80°zenith angle range. Our system outperforms the state-of-the-art holographic-optical-elements approach both in computation speed and object size. We believe that our work significantly advances spherical holographic displays and offers a practical solution with vast potential applications in medicine, geology, and astronomy.</p></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"85 ","pages":"Article 102839"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-wide viewing angle holographic display system based on spherical diffraction\",\"authors\":\"Jun Wang , Mohan Wang , Yang Wu , Jie Zhou , Chun Chen , Di Wang , Qiong-Hua Wang\",\"doi\":\"10.1016/j.displa.2024.102839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the field of holographic displays, achieving a large viewing angle (LVA) has long been an essential and formidable challenge due to the limited diffraction angle of planar spatial light modulators (SLMs). Spherical holography, which allows observation from all perspectives, represents a practical approach to achieve the LVA. However, the physical limitations of commercial SLMs constrain direct implementation, making the realization of spherical holographic displays almost impractical and thus hindering technological advancement. This paper introduces an optical solution for spherical holographic display system, enabling the accurate reproduction of ultra-wide viewing angles and large objects. Our system utilizes a novel technique involving a convex parabolic mirror to convert an incident plane wave into a spherical wave. This innovative strategy permits the use of a planar SLM to create a 360°spherical holographic display. Additionally, we address the sampling issue for generating spherical holograms by constraining the point spread function (PSF), reducing the number of samples, and adapting it for visible light. Numerical simulations and optical experiments validate our success in achieving an ultra-wide viewing angle with a 360°horizontal angle and an 80°zenith angle range. Our system outperforms the state-of-the-art holographic-optical-elements approach both in computation speed and object size. We believe that our work significantly advances spherical holographic displays and offers a practical solution with vast potential applications in medicine, geology, and astronomy.</p></div>\",\"PeriodicalId\":50570,\"journal\":{\"name\":\"Displays\",\"volume\":\"85 \",\"pages\":\"Article 102839\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Displays\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141938224002038\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938224002038","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Ultra-wide viewing angle holographic display system based on spherical diffraction
In the field of holographic displays, achieving a large viewing angle (LVA) has long been an essential and formidable challenge due to the limited diffraction angle of planar spatial light modulators (SLMs). Spherical holography, which allows observation from all perspectives, represents a practical approach to achieve the LVA. However, the physical limitations of commercial SLMs constrain direct implementation, making the realization of spherical holographic displays almost impractical and thus hindering technological advancement. This paper introduces an optical solution for spherical holographic display system, enabling the accurate reproduction of ultra-wide viewing angles and large objects. Our system utilizes a novel technique involving a convex parabolic mirror to convert an incident plane wave into a spherical wave. This innovative strategy permits the use of a planar SLM to create a 360°spherical holographic display. Additionally, we address the sampling issue for generating spherical holograms by constraining the point spread function (PSF), reducing the number of samples, and adapting it for visible light. Numerical simulations and optical experiments validate our success in achieving an ultra-wide viewing angle with a 360°horizontal angle and an 80°zenith angle range. Our system outperforms the state-of-the-art holographic-optical-elements approach both in computation speed and object size. We believe that our work significantly advances spherical holographic displays and offers a practical solution with vast potential applications in medicine, geology, and astronomy.
期刊介绍:
Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface.
Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.