Michiyo Iba , Yeon-Joo Lee , Liam Horan-Portelance , Katherine Chang , Marcell Szabo , Robert A. Rissman , Sungyong You , Eliezer Masliah , Changyoun Kim
{"title":"在突触核蛋白病小鼠模型中抑制 CSF-1R 后的小胶质细胞和神经元命运","authors":"Michiyo Iba , Yeon-Joo Lee , Liam Horan-Portelance , Katherine Chang , Marcell Szabo , Robert A. Rissman , Sungyong You , Eliezer Masliah , Changyoun Kim","doi":"10.1016/j.bbi.2024.09.016","DOIUrl":null,"url":null,"abstract":"<div><p>Synucleinopathies are age-related neurological disorders characterized by the abnormal accumulation of α-synuclein (α-syn) in neuronal and non-neuronal cells. It has been proposed that microglial cells play an important role in synucleinopathy neuroinflammation, as well as homeostatically, such as in the clearance of α-syn aggregates in the brain. Here, we examined the effects of microglia on the pathogenesis of synucleinopathies by cell depletion in a mouse model of synucleinopathies. For this purpose, we treated non-transgenic (Non-tg) and α-synuclein transgenic (α-<em>syn</em>-tg) mice with pexidartinib (PLX3397), a tyrosine kinase inhibitor of colony-stimulating factor 1 receptor (CSF-1R). Neuropathological and immunoblot analysis confirmed that Iba-1 immunoreactive microglial cells were decreased by 95% following PLX3397 treatment in Non-tg and α-<em>syn</em>-tg mice. The level of total α-syn in the Triton X-insoluble fraction of brain homogenate was significantly decreased by microglial depletion in the α-<em>syn</em>-tg mice, while the level of Triton X-soluble human α-syn was not affected. Furthermore, the number of p-α-syn immunoreactive inclusions was reduced in α-<em>syn</em>-tg mice treated with PLX3397. Microglial depletion also ameliorated neuronal and synaptic degeneration in α-<em>syn</em>-tg mice, thereby resulted partially improving the motor behavioral deficit in α-<em>syn</em>-tg mice. Moreover, we demonstrated that microglia that survived post-PLX3397 treatment (PLX-resistant microglia) have lower expressions of CSF-1R, and microglial transcriptome analysis further elucidated that PLX-resistant microglia have unique morphology and transcriptomic signatures relative to vehicle-treated microglia of both genotypes; these include differences in definitive microglial functions such as their immune response, cell mobility, cell–cell communications, and regulation of neural homeostasis. Therefore, we suggest that microglia play a critical role in the pathogenesis of synucleinopathies, and that modulation of microglial status might be an effective therapeutic strategy for synucleinopathies.</p></div>","PeriodicalId":9199,"journal":{"name":"Brain, Behavior, and Immunity","volume":"123 ","pages":"Pages 254-269"},"PeriodicalIF":8.8000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0889159124006196/pdfft?md5=ee6c5397b4f764db8279bbf3606b3730&pid=1-s2.0-S0889159124006196-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Microglial and neuronal fates following inhibition of CSF-1R in synucleinopathy mouse model\",\"authors\":\"Michiyo Iba , Yeon-Joo Lee , Liam Horan-Portelance , Katherine Chang , Marcell Szabo , Robert A. Rissman , Sungyong You , Eliezer Masliah , Changyoun Kim\",\"doi\":\"10.1016/j.bbi.2024.09.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Synucleinopathies are age-related neurological disorders characterized by the abnormal accumulation of α-synuclein (α-syn) in neuronal and non-neuronal cells. It has been proposed that microglial cells play an important role in synucleinopathy neuroinflammation, as well as homeostatically, such as in the clearance of α-syn aggregates in the brain. Here, we examined the effects of microglia on the pathogenesis of synucleinopathies by cell depletion in a mouse model of synucleinopathies. For this purpose, we treated non-transgenic (Non-tg) and α-synuclein transgenic (α-<em>syn</em>-tg) mice with pexidartinib (PLX3397), a tyrosine kinase inhibitor of colony-stimulating factor 1 receptor (CSF-1R). Neuropathological and immunoblot analysis confirmed that Iba-1 immunoreactive microglial cells were decreased by 95% following PLX3397 treatment in Non-tg and α-<em>syn</em>-tg mice. The level of total α-syn in the Triton X-insoluble fraction of brain homogenate was significantly decreased by microglial depletion in the α-<em>syn</em>-tg mice, while the level of Triton X-soluble human α-syn was not affected. Furthermore, the number of p-α-syn immunoreactive inclusions was reduced in α-<em>syn</em>-tg mice treated with PLX3397. Microglial depletion also ameliorated neuronal and synaptic degeneration in α-<em>syn</em>-tg mice, thereby resulted partially improving the motor behavioral deficit in α-<em>syn</em>-tg mice. Moreover, we demonstrated that microglia that survived post-PLX3397 treatment (PLX-resistant microglia) have lower expressions of CSF-1R, and microglial transcriptome analysis further elucidated that PLX-resistant microglia have unique morphology and transcriptomic signatures relative to vehicle-treated microglia of both genotypes; these include differences in definitive microglial functions such as their immune response, cell mobility, cell–cell communications, and regulation of neural homeostasis. Therefore, we suggest that microglia play a critical role in the pathogenesis of synucleinopathies, and that modulation of microglial status might be an effective therapeutic strategy for synucleinopathies.</p></div>\",\"PeriodicalId\":9199,\"journal\":{\"name\":\"Brain, Behavior, and Immunity\",\"volume\":\"123 \",\"pages\":\"Pages 254-269\"},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0889159124006196/pdfft?md5=ee6c5397b4f764db8279bbf3606b3730&pid=1-s2.0-S0889159124006196-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain, Behavior, and Immunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0889159124006196\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, Behavior, and Immunity","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889159124006196","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Microglial and neuronal fates following inhibition of CSF-1R in synucleinopathy mouse model
Synucleinopathies are age-related neurological disorders characterized by the abnormal accumulation of α-synuclein (α-syn) in neuronal and non-neuronal cells. It has been proposed that microglial cells play an important role in synucleinopathy neuroinflammation, as well as homeostatically, such as in the clearance of α-syn aggregates in the brain. Here, we examined the effects of microglia on the pathogenesis of synucleinopathies by cell depletion in a mouse model of synucleinopathies. For this purpose, we treated non-transgenic (Non-tg) and α-synuclein transgenic (α-syn-tg) mice with pexidartinib (PLX3397), a tyrosine kinase inhibitor of colony-stimulating factor 1 receptor (CSF-1R). Neuropathological and immunoblot analysis confirmed that Iba-1 immunoreactive microglial cells were decreased by 95% following PLX3397 treatment in Non-tg and α-syn-tg mice. The level of total α-syn in the Triton X-insoluble fraction of brain homogenate was significantly decreased by microglial depletion in the α-syn-tg mice, while the level of Triton X-soluble human α-syn was not affected. Furthermore, the number of p-α-syn immunoreactive inclusions was reduced in α-syn-tg mice treated with PLX3397. Microglial depletion also ameliorated neuronal and synaptic degeneration in α-syn-tg mice, thereby resulted partially improving the motor behavioral deficit in α-syn-tg mice. Moreover, we demonstrated that microglia that survived post-PLX3397 treatment (PLX-resistant microglia) have lower expressions of CSF-1R, and microglial transcriptome analysis further elucidated that PLX-resistant microglia have unique morphology and transcriptomic signatures relative to vehicle-treated microglia of both genotypes; these include differences in definitive microglial functions such as their immune response, cell mobility, cell–cell communications, and regulation of neural homeostasis. Therefore, we suggest that microglia play a critical role in the pathogenesis of synucleinopathies, and that modulation of microglial status might be an effective therapeutic strategy for synucleinopathies.
期刊介绍:
Established in 1987, Brain, Behavior, and Immunity proudly serves as the official journal of the Psychoneuroimmunology Research Society (PNIRS). This pioneering journal is dedicated to publishing peer-reviewed basic, experimental, and clinical studies that explore the intricate interactions among behavioral, neural, endocrine, and immune systems in both humans and animals.
As an international and interdisciplinary platform, Brain, Behavior, and Immunity focuses on original research spanning neuroscience, immunology, integrative physiology, behavioral biology, psychiatry, psychology, and clinical medicine. The journal is inclusive of research conducted at various levels, including molecular, cellular, social, and whole organism perspectives. With a commitment to efficiency, the journal facilitates online submission and review, ensuring timely publication of experimental results. Manuscripts typically undergo peer review and are returned to authors within 30 days of submission. It's worth noting that Brain, Behavior, and Immunity, published eight times a year, does not impose submission fees or page charges, fostering an open and accessible platform for scientific discourse.