Faisal Javed , Saadia Mumtaz , Ali Raza , Bander Almutairi , G. Mustafa , Ghulam Fatima
{"title":"对称远平行引力中不带电荷黑洞的灰体因子","authors":"Faisal Javed , Saadia Mumtaz , Ali Raza , Bander Almutairi , G. Mustafa , Ghulam Fatima","doi":"10.1016/j.dark.2024.101656","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we investigate the greybody factor of a (3+1)-dimensional black hole solution in the context of alternative <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> gravity with minimum scalar field coupling. We obtain the radial equation by applying the Klein–Gordon equation and transforming it into a Schrodinger wave equation using the tortoise coordinate. This transformation enables us to determine the effective potential and its graphical behavior for different values of the coupling constant and relevant physical parameters. We obtain two solutions for the radial equation corresponding to the event and cosmological horizons. To determine the greybody factor and its behavior, we combine these two solutions in the intermediate regime. The greybody factor increases with an increase in radius and coupling constant. This indicates that in alternative gravity, the larger black hole will die sooner as compared to cosmic gravity.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101656"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Greybody factor of uncharged black hole in symmetric teleparallel gravity\",\"authors\":\"Faisal Javed , Saadia Mumtaz , Ali Raza , Bander Almutairi , G. Mustafa , Ghulam Fatima\",\"doi\":\"10.1016/j.dark.2024.101656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we investigate the greybody factor of a (3+1)-dimensional black hole solution in the context of alternative <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> gravity with minimum scalar field coupling. We obtain the radial equation by applying the Klein–Gordon equation and transforming it into a Schrodinger wave equation using the tortoise coordinate. This transformation enables us to determine the effective potential and its graphical behavior for different values of the coupling constant and relevant physical parameters. We obtain two solutions for the radial equation corresponding to the event and cosmological horizons. To determine the greybody factor and its behavior, we combine these two solutions in the intermediate regime. The greybody factor increases with an increase in radius and coupling constant. This indicates that in alternative gravity, the larger black hole will die sooner as compared to cosmic gravity.</p></div>\",\"PeriodicalId\":48774,\"journal\":{\"name\":\"Physics of the Dark Universe\",\"volume\":\"46 \",\"pages\":\"Article 101656\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Dark Universe\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212686424002383\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686424002383","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Greybody factor of uncharged black hole in symmetric teleparallel gravity
In this study, we investigate the greybody factor of a (3+1)-dimensional black hole solution in the context of alternative gravity with minimum scalar field coupling. We obtain the radial equation by applying the Klein–Gordon equation and transforming it into a Schrodinger wave equation using the tortoise coordinate. This transformation enables us to determine the effective potential and its graphical behavior for different values of the coupling constant and relevant physical parameters. We obtain two solutions for the radial equation corresponding to the event and cosmological horizons. To determine the greybody factor and its behavior, we combine these two solutions in the intermediate regime. The greybody factor increases with an increase in radius and coupling constant. This indicates that in alternative gravity, the larger black hole will die sooner as compared to cosmic gravity.
期刊介绍:
Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact.
The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.