Fang Wang, Han Zhao, Qiao Mou, Zhi-Qiang Du, Cai-Xia Yang
{"title":"在氯喹对猪未成熟 Sertoli 细胞诱导的细胞毒性作用中,鱼藤酮的代谢物发挥了重要作用","authors":"Fang Wang, Han Zhao, Qiao Mou, Zhi-Qiang Du, Cai-Xia Yang","doi":"10.1016/j.tiv.2024.105941","DOIUrl":null,"url":null,"abstract":"<div><p>Chloroquine (CQ) is widely used in the therapy against malarial, tumor and recently the COVID-19 pandemic, as a lysosomotropic agent to inhibit the endolysosomal trafficking in the autophagy pathway. We previously reported that CQ (20 μM, 36 h) could reprogram transcriptome, and impair multiple signaling pathways vital to porcine immature Sertoli cells (iSCs). However, whether CQ treatment could affect the metabolomic compositions of porcine iSCs remains unclear. Here, we showed that CQ (20 μM, 36 h) treatment of porcine iSCs induced significant changes of 63 metabolites (11 up and 52 down) by the metabolomics method, which were involved in different metabolic pathways. Caffeic acid and esculetin, the top two up-regulated metabolites, were validated by ELISA. The combined analysis of metabolomics and transcriptome showed caffeic acid and esculetin to be highly correlated with multiple differentially expressed genes (DEGs), including Ndrg1, S100a8, Sqstm1, S100a12, S100a9, Ill1, Lif, Ntn4 and Peg10. Furthermore, esculetin treatment (53 nM, 36 h) significantly decreased the viability and proliferation, suppressed the mitochondrial function, whereas promoted the apoptosis of porcine iSCs, similar to those by CQ treatment (20 μM, 36 h). Collectively, our results showed that CQ treatment induces metabolic changes, and its effect on porcine iSCs could be partially mediated by esculetin.</p></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"101 ","pages":"Article 105941"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolite of esculetin plays an important role in cytotoxic effects induced by chloroquine on porcine immature Sertoli cells\",\"authors\":\"Fang Wang, Han Zhao, Qiao Mou, Zhi-Qiang Du, Cai-Xia Yang\",\"doi\":\"10.1016/j.tiv.2024.105941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chloroquine (CQ) is widely used in the therapy against malarial, tumor and recently the COVID-19 pandemic, as a lysosomotropic agent to inhibit the endolysosomal trafficking in the autophagy pathway. We previously reported that CQ (20 μM, 36 h) could reprogram transcriptome, and impair multiple signaling pathways vital to porcine immature Sertoli cells (iSCs). However, whether CQ treatment could affect the metabolomic compositions of porcine iSCs remains unclear. Here, we showed that CQ (20 μM, 36 h) treatment of porcine iSCs induced significant changes of 63 metabolites (11 up and 52 down) by the metabolomics method, which were involved in different metabolic pathways. Caffeic acid and esculetin, the top two up-regulated metabolites, were validated by ELISA. The combined analysis of metabolomics and transcriptome showed caffeic acid and esculetin to be highly correlated with multiple differentially expressed genes (DEGs), including Ndrg1, S100a8, Sqstm1, S100a12, S100a9, Ill1, Lif, Ntn4 and Peg10. Furthermore, esculetin treatment (53 nM, 36 h) significantly decreased the viability and proliferation, suppressed the mitochondrial function, whereas promoted the apoptosis of porcine iSCs, similar to those by CQ treatment (20 μM, 36 h). Collectively, our results showed that CQ treatment induces metabolic changes, and its effect on porcine iSCs could be partially mediated by esculetin.</p></div>\",\"PeriodicalId\":54423,\"journal\":{\"name\":\"Toxicology in Vitro\",\"volume\":\"101 \",\"pages\":\"Article 105941\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology in Vitro\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0887233324001711\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology in Vitro","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0887233324001711","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Metabolite of esculetin plays an important role in cytotoxic effects induced by chloroquine on porcine immature Sertoli cells
Chloroquine (CQ) is widely used in the therapy against malarial, tumor and recently the COVID-19 pandemic, as a lysosomotropic agent to inhibit the endolysosomal trafficking in the autophagy pathway. We previously reported that CQ (20 μM, 36 h) could reprogram transcriptome, and impair multiple signaling pathways vital to porcine immature Sertoli cells (iSCs). However, whether CQ treatment could affect the metabolomic compositions of porcine iSCs remains unclear. Here, we showed that CQ (20 μM, 36 h) treatment of porcine iSCs induced significant changes of 63 metabolites (11 up and 52 down) by the metabolomics method, which were involved in different metabolic pathways. Caffeic acid and esculetin, the top two up-regulated metabolites, were validated by ELISA. The combined analysis of metabolomics and transcriptome showed caffeic acid and esculetin to be highly correlated with multiple differentially expressed genes (DEGs), including Ndrg1, S100a8, Sqstm1, S100a12, S100a9, Ill1, Lif, Ntn4 and Peg10. Furthermore, esculetin treatment (53 nM, 36 h) significantly decreased the viability and proliferation, suppressed the mitochondrial function, whereas promoted the apoptosis of porcine iSCs, similar to those by CQ treatment (20 μM, 36 h). Collectively, our results showed that CQ treatment induces metabolic changes, and its effect on porcine iSCs could be partially mediated by esculetin.
期刊介绍:
Toxicology in Vitro publishes original research papers and reviews on the application and use of in vitro systems for assessing or predicting the toxic effects of chemicals and elucidating their mechanisms of action. These in vitro techniques include utilizing cell or tissue cultures, isolated cells, tissue slices, subcellular fractions, transgenic cell cultures, and cells from transgenic organisms, as well as in silico modelling. The Journal will focus on investigations that involve the development and validation of new in vitro methods, e.g. for prediction of toxic effects based on traditional and in silico modelling; on the use of methods in high-throughput toxicology and pharmacology; elucidation of mechanisms of toxic action; the application of genomics, transcriptomics and proteomics in toxicology, as well as on comparative studies that characterise the relationship between in vitro and in vivo findings. The Journal strongly encourages the submission of manuscripts that focus on the development of in vitro methods, their practical applications and regulatory use (e.g. in the areas of food components cosmetics, pharmaceuticals, pesticides, and industrial chemicals). Toxicology in Vitro discourages papers that record reporting on toxicological effects from materials, such as plant extracts or herbal medicines, that have not been chemically characterized.