Chun Feng , Lijuan Zhu , Xuan Cheng , Zhi Li , Xiaolu Gui , Guhui Gao
{"title":"钒微合金化在提高低碳贝氏体钢耐腐蚀性方面的机理作用","authors":"Chun Feng , Lijuan Zhu , Xuan Cheng , Zhi Li , Xiaolu Gui , Guhui Gao","doi":"10.1016/j.jmrt.2024.09.149","DOIUrl":null,"url":null,"abstract":"<div><p>We here investigated the effect of vanadium microalloying on the microstructure, mechanical properties, especially corrosion performances of low carbon bainitic steels. The corrosion behaviors of the steels with different vanadium contents in 3.5 wt% NaCl solution were evaluated by electrochemical tests (including polarization curves and electrochemical impedance spectroscopic measurements) and alternating immersion test (including weight loss and rust layer observation). Results show that the mechanical properties and corrosion resistance of low carbon bainitic steels can be synergistically improved with vanadium microalloying. With help of the electron backscatter diffraction characterization and scanning Kelvin probe force microscopy, we first discovered that although the number of micro-galvanic couples increases because of grain refinement, the Volta potential gradient between the matrix and grain boundaries are decreased with vanadium microalloying, which can promote the formation of compact protective rust layers and improve the corrosion resistance of vanadium micro-alloyed low carbon bainitic steels.</p></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"33 ","pages":"Pages 982-993"},"PeriodicalIF":6.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2238785424021550/pdfft?md5=559dcd208f9eb4110181f543db13b8b7&pid=1-s2.0-S2238785424021550-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Mechanistic role of vanadium microalloying in improving corrosion resistance of low carbon bainitic steel\",\"authors\":\"Chun Feng , Lijuan Zhu , Xuan Cheng , Zhi Li , Xiaolu Gui , Guhui Gao\",\"doi\":\"10.1016/j.jmrt.2024.09.149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We here investigated the effect of vanadium microalloying on the microstructure, mechanical properties, especially corrosion performances of low carbon bainitic steels. The corrosion behaviors of the steels with different vanadium contents in 3.5 wt% NaCl solution were evaluated by electrochemical tests (including polarization curves and electrochemical impedance spectroscopic measurements) and alternating immersion test (including weight loss and rust layer observation). Results show that the mechanical properties and corrosion resistance of low carbon bainitic steels can be synergistically improved with vanadium microalloying. With help of the electron backscatter diffraction characterization and scanning Kelvin probe force microscopy, we first discovered that although the number of micro-galvanic couples increases because of grain refinement, the Volta potential gradient between the matrix and grain boundaries are decreased with vanadium microalloying, which can promote the formation of compact protective rust layers and improve the corrosion resistance of vanadium micro-alloyed low carbon bainitic steels.</p></div>\",\"PeriodicalId\":54332,\"journal\":{\"name\":\"Journal of Materials Research and Technology-Jmr&t\",\"volume\":\"33 \",\"pages\":\"Pages 982-993\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2238785424021550/pdfft?md5=559dcd208f9eb4110181f543db13b8b7&pid=1-s2.0-S2238785424021550-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research and Technology-Jmr&t\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2238785424021550\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785424021550","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanistic role of vanadium microalloying in improving corrosion resistance of low carbon bainitic steel
We here investigated the effect of vanadium microalloying on the microstructure, mechanical properties, especially corrosion performances of low carbon bainitic steels. The corrosion behaviors of the steels with different vanadium contents in 3.5 wt% NaCl solution were evaluated by electrochemical tests (including polarization curves and electrochemical impedance spectroscopic measurements) and alternating immersion test (including weight loss and rust layer observation). Results show that the mechanical properties and corrosion resistance of low carbon bainitic steels can be synergistically improved with vanadium microalloying. With help of the electron backscatter diffraction characterization and scanning Kelvin probe force microscopy, we first discovered that although the number of micro-galvanic couples increases because of grain refinement, the Volta potential gradient between the matrix and grain boundaries are decreased with vanadium microalloying, which can promote the formation of compact protective rust layers and improve the corrosion resistance of vanadium micro-alloyed low carbon bainitic steels.
期刊介绍:
The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.