Qingzhong Mao , Yusheng Li , Yanfang Liu , Jiansheng Li , Wei Jiang , Zhongchen Zhou , Yonghao Zhao , Yuntian Zhu
{"title":"用挤压和扭转相结合的新型严重塑性变形技术制备大块超细晶粒铜","authors":"Qingzhong Mao , Yusheng Li , Yanfang Liu , Jiansheng Li , Wei Jiang , Zhongchen Zhou , Yonghao Zhao , Yuntian Zhu","doi":"10.1016/j.jmatprotec.2024.118600","DOIUrl":null,"url":null,"abstract":"<div><p>Reducing grain size is a well-established method for strengthening metals. In this study, a novel severe plastic deformation technique—combined extrusion and torsion (CET) with composite strain—was developed to fabricate bulk ultrafine grained metals. A single pass of CET treatment (with a rotation velocity of 1 r/s and extrusion speed of 3 mm/s) refined coarse-grained copper from 54 μm to 450 nm at room temperature, resulting a significant increase in hardness from 0.55 GPa to 1.3 GPa. The CET technique addresses the limitations of conventional extrusion-processed copper (without torsion), which suffers from gradient microstructure and hardness distribution. It provides enhanced strain accumulation under the same extrusion ratio conditions. The more homogeneous microstructures and properties of CET-processed copper rods are attributed to the reduced strain gradient due to torsion. Additionally, targeted finite element analysis indicated that the CET technology requires 37 % less extrusion load and offers at least 30 % more strain compared to conventional extrusion methods. Compared with other severe plastic deformation methods, such as equal channel angular pressing and high-pressure torsion, which involve simpler deformation processes, the CET technique shows considerable promise for large-scale manufacturing of ultrafine-grained metals.</p></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"333 ","pages":"Article 118600"},"PeriodicalIF":6.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new severe plastic deformation technique of combined extrusion and torsion to prepare bulk ultrafine grained copper\",\"authors\":\"Qingzhong Mao , Yusheng Li , Yanfang Liu , Jiansheng Li , Wei Jiang , Zhongchen Zhou , Yonghao Zhao , Yuntian Zhu\",\"doi\":\"10.1016/j.jmatprotec.2024.118600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reducing grain size is a well-established method for strengthening metals. In this study, a novel severe plastic deformation technique—combined extrusion and torsion (CET) with composite strain—was developed to fabricate bulk ultrafine grained metals. A single pass of CET treatment (with a rotation velocity of 1 r/s and extrusion speed of 3 mm/s) refined coarse-grained copper from 54 μm to 450 nm at room temperature, resulting a significant increase in hardness from 0.55 GPa to 1.3 GPa. The CET technique addresses the limitations of conventional extrusion-processed copper (without torsion), which suffers from gradient microstructure and hardness distribution. It provides enhanced strain accumulation under the same extrusion ratio conditions. The more homogeneous microstructures and properties of CET-processed copper rods are attributed to the reduced strain gradient due to torsion. Additionally, targeted finite element analysis indicated that the CET technology requires 37 % less extrusion load and offers at least 30 % more strain compared to conventional extrusion methods. Compared with other severe plastic deformation methods, such as equal channel angular pressing and high-pressure torsion, which involve simpler deformation processes, the CET technique shows considerable promise for large-scale manufacturing of ultrafine-grained metals.</p></div>\",\"PeriodicalId\":367,\"journal\":{\"name\":\"Journal of Materials Processing Technology\",\"volume\":\"333 \",\"pages\":\"Article 118600\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Processing Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924013624003182\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013624003182","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
A new severe plastic deformation technique of combined extrusion and torsion to prepare bulk ultrafine grained copper
Reducing grain size is a well-established method for strengthening metals. In this study, a novel severe plastic deformation technique—combined extrusion and torsion (CET) with composite strain—was developed to fabricate bulk ultrafine grained metals. A single pass of CET treatment (with a rotation velocity of 1 r/s and extrusion speed of 3 mm/s) refined coarse-grained copper from 54 μm to 450 nm at room temperature, resulting a significant increase in hardness from 0.55 GPa to 1.3 GPa. The CET technique addresses the limitations of conventional extrusion-processed copper (without torsion), which suffers from gradient microstructure and hardness distribution. It provides enhanced strain accumulation under the same extrusion ratio conditions. The more homogeneous microstructures and properties of CET-processed copper rods are attributed to the reduced strain gradient due to torsion. Additionally, targeted finite element analysis indicated that the CET technology requires 37 % less extrusion load and offers at least 30 % more strain compared to conventional extrusion methods. Compared with other severe plastic deformation methods, such as equal channel angular pressing and high-pressure torsion, which involve simpler deformation processes, the CET technique shows considerable promise for large-scale manufacturing of ultrafine-grained metals.
期刊介绍:
The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance.
Areas of interest to the journal include:
• Casting, forming and machining
• Additive processing and joining technologies
• The evolution of material properties under the specific conditions met in manufacturing processes
• Surface engineering when it relates specifically to a manufacturing process
• Design and behavior of equipment and tools.