{"title":"快速多回转轧制前的热处理对摩擦面铝硅铜合金的影响","authors":"Seyedeh Marjan Bararpour , Hamed Jamshidi Aval , Roohollah Jamaati , Mousa Javidani","doi":"10.1016/j.jmrt.2024.09.119","DOIUrl":null,"url":null,"abstract":"<div><p>In this study the effect of combination of heat treatment of consumable rod and solid solution heat treatment before fast multiple rotation rolling (FMRR) processing on microstructure, mechanical property and wear resistance of Al–Si–Cu alloy friction surfaced on commercial pure aluminum alloy were investigated. Results show that after the FMRR process, there is a significant reduction (99% reduction) in the friction surfaced coating surface roughness. The surface roughness after FMRR processing in the coatings created by homogenized and solid solution treated consumable rod is 0.74 ± 0.12, and 0.56 ± 0.08 μm, respectively. In the coating created by homogenized rod the minimum grain size (1.7 ± 0.2 μm) formed in the FMRR processed layer. Using homogenized consumable rod and FMRR processing by rotational speed of 3000 rpm and traverse speed of 140 mm/min, the maximum hardness (9.8 ± 0.3 GPa) and minimum wear rate (4.6 ± 0.1 μg/m) created at processed layer. FMRR processing by rotational speed of 3000 rpm and traverse speed of 140 mm/min, result in 27 and 24 % increasing in hardness at friction surfaced coating created by homogenized and solid solution treated consumable rods, respectively.</p></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"33 ","pages":"Pages 940-953"},"PeriodicalIF":6.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2238785424021240/pdfft?md5=86ed08e5e039d74649e1b41d2c17ab9a&pid=1-s2.0-S2238785424021240-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of heat treatment before fast multiple rotation rolling on friction surfaced Al–Si–Cu alloy\",\"authors\":\"Seyedeh Marjan Bararpour , Hamed Jamshidi Aval , Roohollah Jamaati , Mousa Javidani\",\"doi\":\"10.1016/j.jmrt.2024.09.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study the effect of combination of heat treatment of consumable rod and solid solution heat treatment before fast multiple rotation rolling (FMRR) processing on microstructure, mechanical property and wear resistance of Al–Si–Cu alloy friction surfaced on commercial pure aluminum alloy were investigated. Results show that after the FMRR process, there is a significant reduction (99% reduction) in the friction surfaced coating surface roughness. The surface roughness after FMRR processing in the coatings created by homogenized and solid solution treated consumable rod is 0.74 ± 0.12, and 0.56 ± 0.08 μm, respectively. In the coating created by homogenized rod the minimum grain size (1.7 ± 0.2 μm) formed in the FMRR processed layer. Using homogenized consumable rod and FMRR processing by rotational speed of 3000 rpm and traverse speed of 140 mm/min, the maximum hardness (9.8 ± 0.3 GPa) and minimum wear rate (4.6 ± 0.1 μg/m) created at processed layer. FMRR processing by rotational speed of 3000 rpm and traverse speed of 140 mm/min, result in 27 and 24 % increasing in hardness at friction surfaced coating created by homogenized and solid solution treated consumable rods, respectively.</p></div>\",\"PeriodicalId\":54332,\"journal\":{\"name\":\"Journal of Materials Research and Technology-Jmr&t\",\"volume\":\"33 \",\"pages\":\"Pages 940-953\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2238785424021240/pdfft?md5=86ed08e5e039d74649e1b41d2c17ab9a&pid=1-s2.0-S2238785424021240-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research and Technology-Jmr&t\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2238785424021240\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785424021240","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of heat treatment before fast multiple rotation rolling on friction surfaced Al–Si–Cu alloy
In this study the effect of combination of heat treatment of consumable rod and solid solution heat treatment before fast multiple rotation rolling (FMRR) processing on microstructure, mechanical property and wear resistance of Al–Si–Cu alloy friction surfaced on commercial pure aluminum alloy were investigated. Results show that after the FMRR process, there is a significant reduction (99% reduction) in the friction surfaced coating surface roughness. The surface roughness after FMRR processing in the coatings created by homogenized and solid solution treated consumable rod is 0.74 ± 0.12, and 0.56 ± 0.08 μm, respectively. In the coating created by homogenized rod the minimum grain size (1.7 ± 0.2 μm) formed in the FMRR processed layer. Using homogenized consumable rod and FMRR processing by rotational speed of 3000 rpm and traverse speed of 140 mm/min, the maximum hardness (9.8 ± 0.3 GPa) and minimum wear rate (4.6 ± 0.1 μg/m) created at processed layer. FMRR processing by rotational speed of 3000 rpm and traverse speed of 140 mm/min, result in 27 and 24 % increasing in hardness at friction surfaced coating created by homogenized and solid solution treated consumable rods, respectively.
期刊介绍:
The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.