质子结合惰性气体 Ar2H+ 复合物新神经网络势的量子计算:同位素效应

IF 2.8 3区 化学 Q3 CHEMISTRY, PHYSICAL
María Judit Montes de Oca-Estévez , Álvaro Valdés , Debasish Koner , Tomás González-Lezana , Rita Prosmiti
{"title":"质子结合惰性气体 Ar2H+ 复合物新神经网络势的量子计算:同位素效应","authors":"María Judit Montes de Oca-Estévez ,&nbsp;Álvaro Valdés ,&nbsp;Debasish Koner ,&nbsp;Tomás González-Lezana ,&nbsp;Rita Prosmiti","doi":"10.1016/j.cplett.2024.141641","DOIUrl":null,"url":null,"abstract":"<div><p>High-quality data-driven potentials were developed aiming to predict rovibrational traits and analyze the influence of the isotopic substitution on the molecular spectroscopic properties of Ar<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>H<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span>. Neural networks machine-learning approaches trained on CCSD(T)/CBS datasets were implemented. Our full-dimensional quantum MCTDH results were discussed in comparison with experimental data in gas phase and solid matrix environments, as well as against theoretical estimates available. The new data indicate that both fundamental and progression bands are dominantly driven by the strength and shape of the underlying interactions. Our simulations could enable the spectroscopic characterization of these species, assisting investigations for their astrophysical observation.</p></div>","PeriodicalId":273,"journal":{"name":"Chemical Physics Letters","volume":"856 ","pages":"Article 141641"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0009261424005839/pdfft?md5=6de007db00107fa4c16e8c22a81bba27&pid=1-s2.0-S0009261424005839-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Quantum computations on a new neural network potential for the proton-bound noble-gas Ar2H+ complex: Isotopic effects\",\"authors\":\"María Judit Montes de Oca-Estévez ,&nbsp;Álvaro Valdés ,&nbsp;Debasish Koner ,&nbsp;Tomás González-Lezana ,&nbsp;Rita Prosmiti\",\"doi\":\"10.1016/j.cplett.2024.141641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-quality data-driven potentials were developed aiming to predict rovibrational traits and analyze the influence of the isotopic substitution on the molecular spectroscopic properties of Ar<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>H<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span>. Neural networks machine-learning approaches trained on CCSD(T)/CBS datasets were implemented. Our full-dimensional quantum MCTDH results were discussed in comparison with experimental data in gas phase and solid matrix environments, as well as against theoretical estimates available. The new data indicate that both fundamental and progression bands are dominantly driven by the strength and shape of the underlying interactions. Our simulations could enable the spectroscopic characterization of these species, assisting investigations for their astrophysical observation.</p></div>\",\"PeriodicalId\":273,\"journal\":{\"name\":\"Chemical Physics Letters\",\"volume\":\"856 \",\"pages\":\"Article 141641\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0009261424005839/pdfft?md5=6de007db00107fa4c16e8c22a81bba27&pid=1-s2.0-S0009261424005839-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009261424005839\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009261424005839","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了高质量的数据驱动势垒,旨在预测 Ar2H+ 的振荡特征并分析同位素替代对其分子光谱特性的影响。我们采用了在 CCSD(T)/CBS 数据集上训练的神经网络机器学习方法。我们将全维量子 MCTDH 结果与气相和固体基质环境中的实验数据以及现有理论估计值进行了比较讨论。新数据表明,基带和级带都主要由基本相互作用的强度和形状驱动。我们的模拟可以对这些物种进行光谱学特征描述,有助于对其进行天体物理观测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantum computations on a new neural network potential for the proton-bound noble-gas Ar2H+ complex: Isotopic effects

Quantum computations on a new neural network potential for the proton-bound noble-gas Ar2H+ complex: Isotopic effects

High-quality data-driven potentials were developed aiming to predict rovibrational traits and analyze the influence of the isotopic substitution on the molecular spectroscopic properties of Ar2H+. Neural networks machine-learning approaches trained on CCSD(T)/CBS datasets were implemented. Our full-dimensional quantum MCTDH results were discussed in comparison with experimental data in gas phase and solid matrix environments, as well as against theoretical estimates available. The new data indicate that both fundamental and progression bands are dominantly driven by the strength and shape of the underlying interactions. Our simulations could enable the spectroscopic characterization of these species, assisting investigations for their astrophysical observation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Physics Letters
Chemical Physics Letters 化学-物理:原子、分子和化学物理
CiteScore
5.70
自引率
3.60%
发文量
798
审稿时长
33 days
期刊介绍: Chemical Physics Letters has an open access mirror journal, Chemical Physics Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Chemical Physics Letters publishes brief reports on molecules, interfaces, condensed phases, nanomaterials and nanostructures, polymers, biomolecular systems, and energy conversion and storage. Criteria for publication are quality, urgency and impact. Further, experimental results reported in the journal have direct relevance for theory, and theoretical developments or non-routine computations relate directly to experiment. Manuscripts must satisfy these criteria and should not be minor extensions of previous work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信