Yuantao Zhao , Yongkang Yue , Wenlong Deng , Jiansheng Li , Ming Chen , Shenqiang Liu , Wenge Li , Yanbo Liu , Vincent Ji
{"title":"后热处理对通过选择性激光熔化制造的 Ti-6Al-4V 合金的微观结构和机械性能的影响","authors":"Yuantao Zhao , Yongkang Yue , Wenlong Deng , Jiansheng Li , Ming Chen , Shenqiang Liu , Wenge Li , Yanbo Liu , Vincent Ji","doi":"10.1016/j.jmrt.2024.09.141","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, post-heat treatments were applied to Ti–6Al–4V (TC4) alloy fabricated by selective laser melting (SLM) to investigate the effects of annealing temperature (750–950 °C in 50 °C intervals) on the alloy's microstructure, residual stress and mechanical properties. The initial microstructure of as-SLMed TC4 alloy was dominated by needle-like α′ martensite with a high density of dislocations and minor β phase, resulting in high strength (1190 MPa) but limited ductility (2.2% elongation). Annealing led to the transformation of α′ martensite into α phase, with the β phase content remaining relatively stable. Increasing the annealing temperature caused the acicular martensite to evolve into bundles of coarse α laths, forming a basket-weave microstructure. Annealing at 750 °C for 2 h reduced the yield strength to 1040 MPa and improved elongation to 8.3%. Interestingly, both the strength and ductility decreased with further increases in annealing temperature. This unusual phenomenon was rarely mentioned in current literature and was considered to be associated with the abnormal variations in the Schmid factor of (0001) [11-20] slip system and the reduction of mobile dislocations within the coarsened α martensite. Additionally, annealing combined with air cooling effectively alleviated residual tensile stresses in the SLM-formed TC4 alloy.</p></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"33 ","pages":"Pages 1155-1164"},"PeriodicalIF":6.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S223878542402146X/pdfft?md5=b62a3b220d21c3ff4c9e035fb21b2056&pid=1-s2.0-S223878542402146X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effects of post-heat treatments on the microstructure and mechanical properties of Ti–6Al–4V alloy fabricated by selective laser melting\",\"authors\":\"Yuantao Zhao , Yongkang Yue , Wenlong Deng , Jiansheng Li , Ming Chen , Shenqiang Liu , Wenge Li , Yanbo Liu , Vincent Ji\",\"doi\":\"10.1016/j.jmrt.2024.09.141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, post-heat treatments were applied to Ti–6Al–4V (TC4) alloy fabricated by selective laser melting (SLM) to investigate the effects of annealing temperature (750–950 °C in 50 °C intervals) on the alloy's microstructure, residual stress and mechanical properties. The initial microstructure of as-SLMed TC4 alloy was dominated by needle-like α′ martensite with a high density of dislocations and minor β phase, resulting in high strength (1190 MPa) but limited ductility (2.2% elongation). Annealing led to the transformation of α′ martensite into α phase, with the β phase content remaining relatively stable. Increasing the annealing temperature caused the acicular martensite to evolve into bundles of coarse α laths, forming a basket-weave microstructure. Annealing at 750 °C for 2 h reduced the yield strength to 1040 MPa and improved elongation to 8.3%. Interestingly, both the strength and ductility decreased with further increases in annealing temperature. This unusual phenomenon was rarely mentioned in current literature and was considered to be associated with the abnormal variations in the Schmid factor of (0001) [11-20] slip system and the reduction of mobile dislocations within the coarsened α martensite. Additionally, annealing combined with air cooling effectively alleviated residual tensile stresses in the SLM-formed TC4 alloy.</p></div>\",\"PeriodicalId\":54332,\"journal\":{\"name\":\"Journal of Materials Research and Technology-Jmr&t\",\"volume\":\"33 \",\"pages\":\"Pages 1155-1164\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S223878542402146X/pdfft?md5=b62a3b220d21c3ff4c9e035fb21b2056&pid=1-s2.0-S223878542402146X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research and Technology-Jmr&t\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S223878542402146X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S223878542402146X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effects of post-heat treatments on the microstructure and mechanical properties of Ti–6Al–4V alloy fabricated by selective laser melting
In this study, post-heat treatments were applied to Ti–6Al–4V (TC4) alloy fabricated by selective laser melting (SLM) to investigate the effects of annealing temperature (750–950 °C in 50 °C intervals) on the alloy's microstructure, residual stress and mechanical properties. The initial microstructure of as-SLMed TC4 alloy was dominated by needle-like α′ martensite with a high density of dislocations and minor β phase, resulting in high strength (1190 MPa) but limited ductility (2.2% elongation). Annealing led to the transformation of α′ martensite into α phase, with the β phase content remaining relatively stable. Increasing the annealing temperature caused the acicular martensite to evolve into bundles of coarse α laths, forming a basket-weave microstructure. Annealing at 750 °C for 2 h reduced the yield strength to 1040 MPa and improved elongation to 8.3%. Interestingly, both the strength and ductility decreased with further increases in annealing temperature. This unusual phenomenon was rarely mentioned in current literature and was considered to be associated with the abnormal variations in the Schmid factor of (0001) [11-20] slip system and the reduction of mobile dislocations within the coarsened α martensite. Additionally, annealing combined with air cooling effectively alleviated residual tensile stresses in the SLM-formed TC4 alloy.
期刊介绍:
The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.