Jeanet Mante, Zach Sents, Duncan Britt, William Mo, Chunxiao Liao, Ryan Greer and Chris J. Myers*,
{"title":"SeqImprove:机器学习辅助基因回路序列信息的整理","authors":"Jeanet Mante, Zach Sents, Duncan Britt, William Mo, Chunxiao Liao, Ryan Greer and Chris J. Myers*, ","doi":"10.1021/acssynbio.4c0039210.1021/acssynbio.4c00392","DOIUrl":null,"url":null,"abstract":"<p >The progress and utility of synthetic biology is currently hindered by the lengthy process of studying literature and replicating poorly documented work. Reconstruction of crucial design information through post hoc curation is highly noisy and error-prone. To combat this, author participation during the curation process is crucial. To encourage author participation without overburdening them, an ML-assisted curation tool called SeqImprove has been developed. Using named entity recognition, called entity normalization, and sequence matching, SeqImprove creates machine-accessible sequence data and metadata annotations, which authors can then review and edit before submitting a final sequence file. SeqImprove makes it easier for authors to submit sequence data that is FAIR (findable, accessible, interoperable, and reusable).</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"13 9","pages":"3051–3055 3051–3055"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SeqImprove: Machine-Learning-Assisted Curation of Genetic Circuit Sequence Information\",\"authors\":\"Jeanet Mante, Zach Sents, Duncan Britt, William Mo, Chunxiao Liao, Ryan Greer and Chris J. Myers*, \",\"doi\":\"10.1021/acssynbio.4c0039210.1021/acssynbio.4c00392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The progress and utility of synthetic biology is currently hindered by the lengthy process of studying literature and replicating poorly documented work. Reconstruction of crucial design information through post hoc curation is highly noisy and error-prone. To combat this, author participation during the curation process is crucial. To encourage author participation without overburdening them, an ML-assisted curation tool called SeqImprove has been developed. Using named entity recognition, called entity normalization, and sequence matching, SeqImprove creates machine-accessible sequence data and metadata annotations, which authors can then review and edit before submitting a final sequence file. SeqImprove makes it easier for authors to submit sequence data that is FAIR (findable, accessible, interoperable, and reusable).</p>\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":\"13 9\",\"pages\":\"3051–3055 3051–3055\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssynbio.4c00392\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssynbio.4c00392","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
SeqImprove: Machine-Learning-Assisted Curation of Genetic Circuit Sequence Information
The progress and utility of synthetic biology is currently hindered by the lengthy process of studying literature and replicating poorly documented work. Reconstruction of crucial design information through post hoc curation is highly noisy and error-prone. To combat this, author participation during the curation process is crucial. To encourage author participation without overburdening them, an ML-assisted curation tool called SeqImprove has been developed. Using named entity recognition, called entity normalization, and sequence matching, SeqImprove creates machine-accessible sequence data and metadata annotations, which authors can then review and edit before submitting a final sequence file. SeqImprove makes it easier for authors to submit sequence data that is FAIR (findable, accessible, interoperable, and reusable).
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.