估算高分辨率弥散核磁共振成像扫描的神经定向分布场

Mohammed Munzer Dwedari, William Consagra, Philip Müller, Özgün Turgut, Daniel Rueckert, Yogesh Rathi
{"title":"估算高分辨率弥散核磁共振成像扫描的神经定向分布场","authors":"Mohammed Munzer Dwedari, William Consagra, Philip Müller, Özgün Turgut, Daniel Rueckert, Yogesh Rathi","doi":"arxiv-2409.09387","DOIUrl":null,"url":null,"abstract":"The Orientation Distribution Function (ODF) characterizes key brain\nmicrostructural properties and plays an important role in understanding brain\nstructural connectivity. Recent works introduced Implicit Neural Representation\n(INR) based approaches to form a spatially aware continuous estimate of the ODF\nfield and demonstrated promising results in key tasks of interest when compared\nto conventional discrete approaches. However, traditional INR methods face\ndifficulties when scaling to large-scale images, such as modern\nultra-high-resolution MRI scans, posing challenges in learning fine structures\nas well as inefficiencies in training and inference speed. In this work, we\npropose HashEnc, a grid-hash-encoding-based estimation of the ODF field and\ndemonstrate its effectiveness in retaining structural and textural features. We\nshow that HashEnc achieves a 10% enhancement in image quality while requiring\n3x less computational resources than current methods. Our code can be found at\nhttps://github.com/MunzerDw/NODF-HashEnc.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Neural Orientation Distribution Fields on High Resolution Diffusion MRI Scans\",\"authors\":\"Mohammed Munzer Dwedari, William Consagra, Philip Müller, Özgün Turgut, Daniel Rueckert, Yogesh Rathi\",\"doi\":\"arxiv-2409.09387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Orientation Distribution Function (ODF) characterizes key brain\\nmicrostructural properties and plays an important role in understanding brain\\nstructural connectivity. Recent works introduced Implicit Neural Representation\\n(INR) based approaches to form a spatially aware continuous estimate of the ODF\\nfield and demonstrated promising results in key tasks of interest when compared\\nto conventional discrete approaches. However, traditional INR methods face\\ndifficulties when scaling to large-scale images, such as modern\\nultra-high-resolution MRI scans, posing challenges in learning fine structures\\nas well as inefficiencies in training and inference speed. In this work, we\\npropose HashEnc, a grid-hash-encoding-based estimation of the ODF field and\\ndemonstrate its effectiveness in retaining structural and textural features. We\\nshow that HashEnc achieves a 10% enhancement in image quality while requiring\\n3x less computational resources than current methods. Our code can be found at\\nhttps://github.com/MunzerDw/NODF-HashEnc.\",\"PeriodicalId\":501289,\"journal\":{\"name\":\"arXiv - EE - Image and Video Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Image and Video Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

方向分布函数(ODF)描述了大脑微结构的关键特性,在理解大脑结构连接性方面发挥着重要作用。最近的研究引入了基于内隐神经表征(INR)的方法来形成对 ODF 场的空间感知连续估计,与传统的离散方法相比,这些方法在关键任务中表现出了良好的效果。然而,传统的 INR 方法在扩展到大规模图像(如现代超高分辨率 MRI 扫描)时遇到了困难,在学习精细结构以及训练和推理速度方面效率低下。在这项工作中,我们提出了基于网格哈希编码的 ODF 场估计方法 HashEnc,并演示了它在保留结构和纹理特征方面的有效性。结果表明,HashEnc 能使图像质量提高 10%,而所需的计算资源是现有方法的 3 倍。我们的代码可在https://github.com/MunzerDw/NODF-HashEnc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Neural Orientation Distribution Fields on High Resolution Diffusion MRI Scans
The Orientation Distribution Function (ODF) characterizes key brain microstructural properties and plays an important role in understanding brain structural connectivity. Recent works introduced Implicit Neural Representation (INR) based approaches to form a spatially aware continuous estimate of the ODF field and demonstrated promising results in key tasks of interest when compared to conventional discrete approaches. However, traditional INR methods face difficulties when scaling to large-scale images, such as modern ultra-high-resolution MRI scans, posing challenges in learning fine structures as well as inefficiencies in training and inference speed. In this work, we propose HashEnc, a grid-hash-encoding-based estimation of the ODF field and demonstrate its effectiveness in retaining structural and textural features. We show that HashEnc achieves a 10% enhancement in image quality while requiring 3x less computational resources than current methods. Our code can be found at https://github.com/MunzerDw/NODF-HashEnc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信