通过eks软件包中的核平滑方法在R语言中实现整洁数据和地理空间数据的统计可视化

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tarn Duong
{"title":"通过eks软件包中的核平滑方法在R语言中实现整洁数据和地理空间数据的统计可视化","authors":"Tarn Duong","doi":"10.1007/s00180-024-01543-9","DOIUrl":null,"url":null,"abstract":"<p>Kernel smoothers are essential tools for data analysis due to their ability to convey complex statistical information with concise graphical visualisations. Their inclusion in the base distribution and in the many user-contributed add-on packages of the <span>R</span> statistical analysis environment caters well to many practitioners. Though there remain some important gaps for specialised data, most notably for tidy and geospatial data. The proposed <span>eks</span> package fills in these gaps. In addition to kernel density estimation, this package also caters for more complex data analysis situations, such as density derivative estimation, density-based classification (supervised learning) and mean shift clustering (unsupervised learning). We illustrate with experimental data how to obtain and to interpret the statistical visualisations for these kernel smoothing methods.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical visualisation of tidy and geospatial data in R via kernel smoothing methods in the eks package\",\"authors\":\"Tarn Duong\",\"doi\":\"10.1007/s00180-024-01543-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Kernel smoothers are essential tools for data analysis due to their ability to convey complex statistical information with concise graphical visualisations. Their inclusion in the base distribution and in the many user-contributed add-on packages of the <span>R</span> statistical analysis environment caters well to many practitioners. Though there remain some important gaps for specialised data, most notably for tidy and geospatial data. The proposed <span>eks</span> package fills in these gaps. In addition to kernel density estimation, this package also caters for more complex data analysis situations, such as density derivative estimation, density-based classification (supervised learning) and mean shift clustering (unsupervised learning). We illustrate with experimental data how to obtain and to interpret the statistical visualisations for these kernel smoothing methods.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-024-01543-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01543-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

核平滑器能以简洁的图形直观地表达复杂的统计信息,是数据分析的重要工具。R 统计分析环境的基本发行版和许多用户贡献的附加软件包中都包含了这些工具,很好地满足了许多从业人员的需求。不过,对于专业数据,尤其是整洁数据和地理空间数据,仍然存在一些重要的空白。拟议的 eks 软件包填补了这些空白。除核密度估计外,该软件包还可用于更复杂的数据分析情况,如密度导数估计、基于密度的分类(监督学习)和均值移动聚类(无监督学习)。我们将用实验数据说明如何获得和解释这些核平滑方法的统计可视化效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Statistical visualisation of tidy and geospatial data in R via kernel smoothing methods in the eks package

Statistical visualisation of tidy and geospatial data in R via kernel smoothing methods in the eks package

Kernel smoothers are essential tools for data analysis due to their ability to convey complex statistical information with concise graphical visualisations. Their inclusion in the base distribution and in the many user-contributed add-on packages of the R statistical analysis environment caters well to many practitioners. Though there remain some important gaps for specialised data, most notably for tidy and geospatial data. The proposed eks package fills in these gaps. In addition to kernel density estimation, this package also caters for more complex data analysis situations, such as density derivative estimation, density-based classification (supervised learning) and mean shift clustering (unsupervised learning). We illustrate with experimental data how to obtain and to interpret the statistical visualisations for these kernel smoothing methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信