{"title":"用简化非线性模型对大应变下的场地响应进行数值建模:Lotung 地震阵列的应用","authors":"Francesco Di Buccio, Alessandro Pagliaroli","doi":"10.1515/geo-2022-0627","DOIUrl":null,"url":null,"abstract":"Site response analyses at large strains are routinely carried out neglecting the shear strength of soil and the stiffness degradation due to the increase in pore pressures, leading to unrealistic predictions of the seismic response of soil deposits. The study investigates the performance of a simplified nonlinear (NL) approach, implemented in the Deepsoil code, constituted by coupling a hyperbolic model incorporating shear strength with a strain-based semi-empirical pore pressure generation model. The first part of the study, based on a large one-dimensional parametric study, shows that above a shear strain of 0.1%, it is necessary to include shear strength in the site response modelling to get more realistic results. Then, the approach has been evaluated with reference to the well-known downhole Large-Scale Seismic Test array located in Lotung (Taiwan): numerical results have been compared with recordings in terms of acceleration response spectra and pore water pressure time histories at different depths along the soil profiles. The comparison shows that the NL simplified model is characterized by an accuracy comparable with more sophisticated advanced elasto-plastic NL analyses adopting essentially the same input data of the traditional equivalent linear approaches(shear modulus and damping curves) and simple physical-mechanical properties routinely determined during geotechnical surveys (i.e., shear strength, relative density, fine content). This approach is therefore recommended for site response analyses reaching large strains (i.e., soft soil deposits and moderate-to-high input motions).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical modeling of site response at large strains with simplified nonlinear models: Application to Lotung seismic array\",\"authors\":\"Francesco Di Buccio, Alessandro Pagliaroli\",\"doi\":\"10.1515/geo-2022-0627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Site response analyses at large strains are routinely carried out neglecting the shear strength of soil and the stiffness degradation due to the increase in pore pressures, leading to unrealistic predictions of the seismic response of soil deposits. The study investigates the performance of a simplified nonlinear (NL) approach, implemented in the Deepsoil code, constituted by coupling a hyperbolic model incorporating shear strength with a strain-based semi-empirical pore pressure generation model. The first part of the study, based on a large one-dimensional parametric study, shows that above a shear strain of 0.1%, it is necessary to include shear strength in the site response modelling to get more realistic results. Then, the approach has been evaluated with reference to the well-known downhole Large-Scale Seismic Test array located in Lotung (Taiwan): numerical results have been compared with recordings in terms of acceleration response spectra and pore water pressure time histories at different depths along the soil profiles. The comparison shows that the NL simplified model is characterized by an accuracy comparable with more sophisticated advanced elasto-plastic NL analyses adopting essentially the same input data of the traditional equivalent linear approaches(shear modulus and damping curves) and simple physical-mechanical properties routinely determined during geotechnical surveys (i.e., shear strength, relative density, fine content). This approach is therefore recommended for site response analyses reaching large strains (i.e., soft soil deposits and moderate-to-high input motions).\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1515/geo-2022-0627\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1515/geo-2022-0627","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Numerical modeling of site response at large strains with simplified nonlinear models: Application to Lotung seismic array
Site response analyses at large strains are routinely carried out neglecting the shear strength of soil and the stiffness degradation due to the increase in pore pressures, leading to unrealistic predictions of the seismic response of soil deposits. The study investigates the performance of a simplified nonlinear (NL) approach, implemented in the Deepsoil code, constituted by coupling a hyperbolic model incorporating shear strength with a strain-based semi-empirical pore pressure generation model. The first part of the study, based on a large one-dimensional parametric study, shows that above a shear strain of 0.1%, it is necessary to include shear strength in the site response modelling to get more realistic results. Then, the approach has been evaluated with reference to the well-known downhole Large-Scale Seismic Test array located in Lotung (Taiwan): numerical results have been compared with recordings in terms of acceleration response spectra and pore water pressure time histories at different depths along the soil profiles. The comparison shows that the NL simplified model is characterized by an accuracy comparable with more sophisticated advanced elasto-plastic NL analyses adopting essentially the same input data of the traditional equivalent linear approaches(shear modulus and damping curves) and simple physical-mechanical properties routinely determined during geotechnical surveys (i.e., shear strength, relative density, fine content). This approach is therefore recommended for site response analyses reaching large strains (i.e., soft soil deposits and moderate-to-high input motions).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.