基于离散单元的掩码技术改善语音转换中的解缠效果

Philip H. Lee, Ismail Rasim Ulgen, Berrak Sisman
{"title":"基于离散单元的掩码技术改善语音转换中的解缠效果","authors":"Philip H. Lee, Ismail Rasim Ulgen, Berrak Sisman","doi":"arxiv-2409.11560","DOIUrl":null,"url":null,"abstract":"Voice conversion (VC) aims to modify the speaker's identity while preserving\nthe linguistic content. Commonly, VC methods use an encoder-decoder\narchitecture, where disentangling the speaker's identity from linguistic\ninformation is crucial. However, the disentanglement approaches used in these\nmethods are limited as the speaker features depend on the phonetic content of\nthe utterance, compromising disentanglement. This dependency is amplified with\nattention-based methods. To address this, we introduce a novel masking\nmechanism in the input before speaker encoding, masking certain discrete speech\nunits that correspond highly with phoneme classes. Our work aims to reduce the\nphonetic dependency of speaker features by restricting access to some phonetic\ninformation. Furthermore, since our approach is at the input level, it is\napplicable to any encoder-decoder based VC framework. Our approach improves\ndisentanglement and conversion performance across multiple VC methods, showing\nsignificant effectiveness, particularly in attention-based method, with 44%\nrelative improvement in objective intelligibility.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete Unit based Masking for Improving Disentanglement in Voice Conversion\",\"authors\":\"Philip H. Lee, Ismail Rasim Ulgen, Berrak Sisman\",\"doi\":\"arxiv-2409.11560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Voice conversion (VC) aims to modify the speaker's identity while preserving\\nthe linguistic content. Commonly, VC methods use an encoder-decoder\\narchitecture, where disentangling the speaker's identity from linguistic\\ninformation is crucial. However, the disentanglement approaches used in these\\nmethods are limited as the speaker features depend on the phonetic content of\\nthe utterance, compromising disentanglement. This dependency is amplified with\\nattention-based methods. To address this, we introduce a novel masking\\nmechanism in the input before speaker encoding, masking certain discrete speech\\nunits that correspond highly with phoneme classes. Our work aims to reduce the\\nphonetic dependency of speaker features by restricting access to some phonetic\\ninformation. Furthermore, since our approach is at the input level, it is\\napplicable to any encoder-decoder based VC framework. Our approach improves\\ndisentanglement and conversion performance across multiple VC methods, showing\\nsignificant effectiveness, particularly in attention-based method, with 44%\\nrelative improvement in objective intelligibility.\",\"PeriodicalId\":501284,\"journal\":{\"name\":\"arXiv - EE - Audio and Speech Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Audio and Speech Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

语音转换(VC)旨在修改说话者的身份,同时保留语言内容。语音转换方法通常使用编码器-解码器架构,其中将说话人的身份与语言信息分离是关键。然而,这些方法中使用的解离方法是有限的,因为说话人的特征依赖于语篇的语音内容,从而影响了解离效果。这种依赖性在基于注意力的方法中被进一步放大。为了解决这个问题,我们在扬声器编码前的输入中引入了一种新的屏蔽机制,屏蔽某些与音素类别高度对应的离散语音单元。我们的工作旨在通过限制对某些语音信息的访问来减少说话人特征的语音依赖性。此外,由于我们的方法是输入层面的,因此适用于任何基于编码器-解码器的 VC 框架。我们的方法提高了多种变声方法的解切和转换性能,显示出显著的效果,尤其是在基于注意力的方法中,客观可懂度相对提高了 44%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete Unit based Masking for Improving Disentanglement in Voice Conversion
Voice conversion (VC) aims to modify the speaker's identity while preserving the linguistic content. Commonly, VC methods use an encoder-decoder architecture, where disentangling the speaker's identity from linguistic information is crucial. However, the disentanglement approaches used in these methods are limited as the speaker features depend on the phonetic content of the utterance, compromising disentanglement. This dependency is amplified with attention-based methods. To address this, we introduce a novel masking mechanism in the input before speaker encoding, masking certain discrete speech units that correspond highly with phoneme classes. Our work aims to reduce the phonetic dependency of speaker features by restricting access to some phonetic information. Furthermore, since our approach is at the input level, it is applicable to any encoder-decoder based VC framework. Our approach improves disentanglement and conversion performance across multiple VC methods, showing significant effectiveness, particularly in attention-based method, with 44% relative improvement in objective intelligibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信