{"title":"线性和半线性抛物方程指数中点法的后验误差估计","authors":"Xianfa Hu, Wansheng Wang, Mengli Mao, Jiliang Cao","doi":"10.1007/s11075-024-01940-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the a posteriori error estimates of the exponential midpoint method for time discretization are established for linear and semilinear parabolic equations. Using the exponential midpoint approximation defined by a continuous and piecewise linear interpolation of nodal values yields suboptimal order estimates. Based on the property of the entire function, we introduce a continuous and piecewise quadratic time reconstruction of the exponential midpoint method to derive optimal order estimates; the error bounds solely depend on the discretization parameters, the data of the problem, and the approximation of the entire function. Several numerical examples are implemented to illustrate the theoretical results.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A posteriori error estimates for the exponential midpoint method for linear and semilinear parabolic equations\",\"authors\":\"Xianfa Hu, Wansheng Wang, Mengli Mao, Jiliang Cao\",\"doi\":\"10.1007/s11075-024-01940-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, the a posteriori error estimates of the exponential midpoint method for time discretization are established for linear and semilinear parabolic equations. Using the exponential midpoint approximation defined by a continuous and piecewise linear interpolation of nodal values yields suboptimal order estimates. Based on the property of the entire function, we introduce a continuous and piecewise quadratic time reconstruction of the exponential midpoint method to derive optimal order estimates; the error bounds solely depend on the discretization parameters, the data of the problem, and the approximation of the entire function. Several numerical examples are implemented to illustrate the theoretical results.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01940-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01940-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A posteriori error estimates for the exponential midpoint method for linear and semilinear parabolic equations
In this paper, the a posteriori error estimates of the exponential midpoint method for time discretization are established for linear and semilinear parabolic equations. Using the exponential midpoint approximation defined by a continuous and piecewise linear interpolation of nodal values yields suboptimal order estimates. Based on the property of the entire function, we introduce a continuous and piecewise quadratic time reconstruction of the exponential midpoint method to derive optimal order estimates; the error bounds solely depend on the discretization parameters, the data of the problem, and the approximation of the entire function. Several numerical examples are implemented to illustrate the theoretical results.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.