{"title":"线性和半线性抛物方程指数中点法的后验误差估计","authors":"Xianfa Hu, Wansheng Wang, Mengli Mao, Jiliang Cao","doi":"10.1007/s11075-024-01940-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the a posteriori error estimates of the exponential midpoint method for time discretization are established for linear and semilinear parabolic equations. Using the exponential midpoint approximation defined by a continuous and piecewise linear interpolation of nodal values yields suboptimal order estimates. Based on the property of the entire function, we introduce a continuous and piecewise quadratic time reconstruction of the exponential midpoint method to derive optimal order estimates; the error bounds solely depend on the discretization parameters, the data of the problem, and the approximation of the entire function. Several numerical examples are implemented to illustrate the theoretical results.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"32 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A posteriori error estimates for the exponential midpoint method for linear and semilinear parabolic equations\",\"authors\":\"Xianfa Hu, Wansheng Wang, Mengli Mao, Jiliang Cao\",\"doi\":\"10.1007/s11075-024-01940-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, the a posteriori error estimates of the exponential midpoint method for time discretization are established for linear and semilinear parabolic equations. Using the exponential midpoint approximation defined by a continuous and piecewise linear interpolation of nodal values yields suboptimal order estimates. Based on the property of the entire function, we introduce a continuous and piecewise quadratic time reconstruction of the exponential midpoint method to derive optimal order estimates; the error bounds solely depend on the discretization parameters, the data of the problem, and the approximation of the entire function. Several numerical examples are implemented to illustrate the theoretical results.</p>\",\"PeriodicalId\":54709,\"journal\":{\"name\":\"Numerical Algorithms\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01940-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01940-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A posteriori error estimates for the exponential midpoint method for linear and semilinear parabolic equations
In this paper, the a posteriori error estimates of the exponential midpoint method for time discretization are established for linear and semilinear parabolic equations. Using the exponential midpoint approximation defined by a continuous and piecewise linear interpolation of nodal values yields suboptimal order estimates. Based on the property of the entire function, we introduce a continuous and piecewise quadratic time reconstruction of the exponential midpoint method to derive optimal order estimates; the error bounds solely depend on the discretization parameters, the data of the problem, and the approximation of the entire function. Several numerical examples are implemented to illustrate the theoretical results.
期刊介绍:
The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.