{"title":"正则化 p-Stokes 方程牛顿法的全局收敛性","authors":"Niko Schmidt","doi":"10.1007/s11075-024-01941-6","DOIUrl":null,"url":null,"abstract":"<p>The motion of glaciers can be simulated with the <span>\\(\\varvec{p}\\)</span>-Stokes equations. Up to now, Newton’s method to solve these equations has been analyzed in finite-dimensional settings only. We analyze the problem in infinite dimensions to gain a new viewpoint. We do that by proving global convergence of the infinite-dimensional Newton’s method with Armijo step sizes to the solution of these equations. We only have to add an arbitrarily small diffusion term for this convergence result. We prove that the additional diffusion term only causes minor differences in the solution compared to the original <span>\\(\\varvec{p}\\)</span>-Stokes equations under the assumption of some regularity. Finally, we test our algorithms on two experiments: A reformulation of the experiment ISMIP-HOM <span>\\(\\varvec{B}\\)</span> without sliding and a block with sliding. For the former, the approximation of exact step sizes for the Picard iteration and exact step sizes and Armijo step sizes for Newton’s method are superior in the experiment compared to the Picard iteration. For the latter experiment, Newton’s method with Armijo step sizes needs many iterations until it converges fast to the solution. Thus, Newton’s method with approximately exact step sizes is better than Armijo step sizes in this experiment.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global convergence of Newton’s method for the regularized p-Stokes equations\",\"authors\":\"Niko Schmidt\",\"doi\":\"10.1007/s11075-024-01941-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The motion of glaciers can be simulated with the <span>\\\\(\\\\varvec{p}\\\\)</span>-Stokes equations. Up to now, Newton’s method to solve these equations has been analyzed in finite-dimensional settings only. We analyze the problem in infinite dimensions to gain a new viewpoint. We do that by proving global convergence of the infinite-dimensional Newton’s method with Armijo step sizes to the solution of these equations. We only have to add an arbitrarily small diffusion term for this convergence result. We prove that the additional diffusion term only causes minor differences in the solution compared to the original <span>\\\\(\\\\varvec{p}\\\\)</span>-Stokes equations under the assumption of some regularity. Finally, we test our algorithms on two experiments: A reformulation of the experiment ISMIP-HOM <span>\\\\(\\\\varvec{B}\\\\)</span> without sliding and a block with sliding. For the former, the approximation of exact step sizes for the Picard iteration and exact step sizes and Armijo step sizes for Newton’s method are superior in the experiment compared to the Picard iteration. For the latter experiment, Newton’s method with Armijo step sizes needs many iterations until it converges fast to the solution. Thus, Newton’s method with approximately exact step sizes is better than Armijo step sizes in this experiment.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01941-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01941-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Global convergence of Newton’s method for the regularized p-Stokes equations
The motion of glaciers can be simulated with the \(\varvec{p}\)-Stokes equations. Up to now, Newton’s method to solve these equations has been analyzed in finite-dimensional settings only. We analyze the problem in infinite dimensions to gain a new viewpoint. We do that by proving global convergence of the infinite-dimensional Newton’s method with Armijo step sizes to the solution of these equations. We only have to add an arbitrarily small diffusion term for this convergence result. We prove that the additional diffusion term only causes minor differences in the solution compared to the original \(\varvec{p}\)-Stokes equations under the assumption of some regularity. Finally, we test our algorithms on two experiments: A reformulation of the experiment ISMIP-HOM \(\varvec{B}\) without sliding and a block with sliding. For the former, the approximation of exact step sizes for the Picard iteration and exact step sizes and Armijo step sizes for Newton’s method are superior in the experiment compared to the Picard iteration. For the latter experiment, Newton’s method with Armijo step sizes needs many iterations until it converges fast to the solution. Thus, Newton’s method with approximately exact step sizes is better than Armijo step sizes in this experiment.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.