论词典积的最大阶类型

Mirna Džamonja, Isa Vialard
{"title":"论词典积的最大阶类型","authors":"Mirna Džamonja, Isa Vialard","doi":"arxiv-2409.09699","DOIUrl":null,"url":null,"abstract":"We give a self-contained proof of Isa Vialard's formula for $o(P\\cdot Q)$\nwhere $P$ and $Q$ are wpos. The proof introduces the notion of a cut of partial\norder, which might be of independent interest.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On maximal order type of the lexicographic product\",\"authors\":\"Mirna Džamonja, Isa Vialard\",\"doi\":\"arxiv-2409.09699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a self-contained proof of Isa Vialard's formula for $o(P\\\\cdot Q)$\\nwhere $P$ and $Q$ are wpos. The proof introduces the notion of a cut of partial\\norder, which might be of independent interest.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了伊萨-维亚拉公式对 $o(P\cdot Q)$(其中 $P$ 和 $Q$ 都是 wpos)的自足证明。证明中引入了部分阶切割的概念,这可能会引起人们的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On maximal order type of the lexicographic product
We give a self-contained proof of Isa Vialard's formula for $o(P\cdot Q)$ where $P$ and $Q$ are wpos. The proof introduces the notion of a cut of partial order, which might be of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信