晶体晶格热导率的可解释公式

Xiaoying Wang, Guoyu Shu, Guimei Zhu, Jiansheng Wang, Jun Sun, Xiangdong Ding, Baowen Li, Zhibin Gao
{"title":"晶体晶格热导率的可解释公式","authors":"Xiaoying Wang, Guoyu Shu, Guimei Zhu, Jiansheng Wang, Jun Sun, Xiangdong Ding, Baowen Li, Zhibin Gao","doi":"arxiv-2409.04489","DOIUrl":null,"url":null,"abstract":"Lattice thermal conductivity (kL) is a crucial physical property of crystals\nwith applications in thermal management, such as heat dissipation, insulation,\nand thermoelectric energy conversion. However, accurately and rapidly\ndetermining kL poses a considerable challenge. In this study, we introduce an\nformula that achieves high precision (mean relative error=8.97%) and provides\nfast predictions, taking less than one minute, for kL across a wide range of\ninorganic binary and ternary materials. Our interpretable, dimensionally\naligned and physical grounded formula forecasts kL values for 4,601 binary and\n6,995 ternary materials in the Materials Project database. Notably, we predict\nundiscovered high kL values for AlBN2 (kL=101 W/ m/ K) and the undetectedlow kL\nCs2Se (kL=0.98 W/ m/ K) at room temperature. This method for determining kL\nstreamlines the traditionally time-consuming process associated with complex\nphonon physics. It provides insights into microscopic heat transport and\nfacilitates the design and screening of materials with targeted and extreme kL\nvalues through the application of phonon engineering. Our findings offer\nopportunities for controlling and optimizing macroscopic transport properties\nof materials by engineering their bulk modulus, shear modulus, and Gruneisen\nparameter.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An interpretable formula for lattice thermal conductivity of crystals\",\"authors\":\"Xiaoying Wang, Guoyu Shu, Guimei Zhu, Jiansheng Wang, Jun Sun, Xiangdong Ding, Baowen Li, Zhibin Gao\",\"doi\":\"arxiv-2409.04489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lattice thermal conductivity (kL) is a crucial physical property of crystals\\nwith applications in thermal management, such as heat dissipation, insulation,\\nand thermoelectric energy conversion. However, accurately and rapidly\\ndetermining kL poses a considerable challenge. In this study, we introduce an\\nformula that achieves high precision (mean relative error=8.97%) and provides\\nfast predictions, taking less than one minute, for kL across a wide range of\\ninorganic binary and ternary materials. Our interpretable, dimensionally\\naligned and physical grounded formula forecasts kL values for 4,601 binary and\\n6,995 ternary materials in the Materials Project database. Notably, we predict\\nundiscovered high kL values for AlBN2 (kL=101 W/ m/ K) and the undetectedlow kL\\nCs2Se (kL=0.98 W/ m/ K) at room temperature. This method for determining kL\\nstreamlines the traditionally time-consuming process associated with complex\\nphonon physics. It provides insights into microscopic heat transport and\\nfacilitates the design and screening of materials with targeted and extreme kL\\nvalues through the application of phonon engineering. Our findings offer\\nopportunities for controlling and optimizing macroscopic transport properties\\nof materials by engineering their bulk modulus, shear modulus, and Gruneisen\\nparameter.\",\"PeriodicalId\":501369,\"journal\":{\"name\":\"arXiv - PHYS - Computational Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Computational Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

晶格热导率(kL)是晶体的一项重要物理特性,可应用于散热、绝缘和热电能量转换等热管理领域。然而,准确、快速地测定 kL 是一项相当大的挑战。在这项研究中,我们介绍了一种公式,它能实现高精度(平均相对误差=8.97%),并能在一分钟内快速预测各种无机二元和三元材料的 kL。我们的公式具有可解释性、尺寸对齐性和物理基础性,可预测材料项目数据库中 4,601 种二元材料和 6,995 种三元材料的 kL 值。值得注意的是,我们预测发现了室温下 AlBN2 的高 kL 值(kL=101 W/ m/ K)和未检测到的低 kLCs2Se(kL=0.98 W/ m/ K)。这种确定 kL 的方法简化了传统上与复合氙物理学相关的耗时过程。它提供了对微观热传输的洞察力,并通过声子工程的应用,促进了具有目标和极端 kL 值的材料的设计和筛选。我们的研究结果为通过设计材料的体积模量、剪切模量和格鲁尼森参数来控制和优化材料的宏观传输特性提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An interpretable formula for lattice thermal conductivity of crystals
Lattice thermal conductivity (kL) is a crucial physical property of crystals with applications in thermal management, such as heat dissipation, insulation, and thermoelectric energy conversion. However, accurately and rapidly determining kL poses a considerable challenge. In this study, we introduce an formula that achieves high precision (mean relative error=8.97%) and provides fast predictions, taking less than one minute, for kL across a wide range of inorganic binary and ternary materials. Our interpretable, dimensionally aligned and physical grounded formula forecasts kL values for 4,601 binary and 6,995 ternary materials in the Materials Project database. Notably, we predict undiscovered high kL values for AlBN2 (kL=101 W/ m/ K) and the undetectedlow kL Cs2Se (kL=0.98 W/ m/ K) at room temperature. This method for determining kL streamlines the traditionally time-consuming process associated with complex phonon physics. It provides insights into microscopic heat transport and facilitates the design and screening of materials with targeted and extreme kL values through the application of phonon engineering. Our findings offer opportunities for controlling and optimizing macroscopic transport properties of materials by engineering their bulk modulus, shear modulus, and Gruneisen parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信