2-无条件序列空间和对称序列空间的罗顿规范

IF 1.1 2区 数学 Q1 MATHEMATICS
Stephen Dilworth, Denka Kutzarova, Pavlos Motakis
{"title":"2-无条件序列空间和对称序列空间的罗顿规范","authors":"Stephen Dilworth, Denka Kutzarova, Pavlos Motakis","doi":"10.1007/s43037-024-00379-1","DOIUrl":null,"url":null,"abstract":"<p>A reflexive Banach space with an unconditional basis admits an equivalent 1-unconditional 2<i>R</i> norm and embeds into a reflexive space with a 1-symmetric 2<i>R</i> norm. Partial results on 1-symmetric 2<i>R</i> renormings of spaces with a symmetric basis are obtained.</p>","PeriodicalId":55400,"journal":{"name":"Banach Journal of Mathematical Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2-Rotund norms for unconditional and symmetric sequence spaces\",\"authors\":\"Stephen Dilworth, Denka Kutzarova, Pavlos Motakis\",\"doi\":\"10.1007/s43037-024-00379-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A reflexive Banach space with an unconditional basis admits an equivalent 1-unconditional 2<i>R</i> norm and embeds into a reflexive space with a 1-symmetric 2<i>R</i> norm. Partial results on 1-symmetric 2<i>R</i> renormings of spaces with a symmetric basis are obtained.</p>\",\"PeriodicalId\":55400,\"journal\":{\"name\":\"Banach Journal of Mathematical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Banach Journal of Mathematical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s43037-024-00379-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Banach Journal of Mathematical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s43037-024-00379-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

具有无条件基的反身巴拿赫空间接受等价的 1-unconditional 2R 规范,并嵌入具有 1 对称 2R 规范的反身空间。本文获得了关于具有对称基的空间的 1 对称 2R 重规范的部分结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2-Rotund norms for unconditional and symmetric sequence spaces

A reflexive Banach space with an unconditional basis admits an equivalent 1-unconditional 2R norm and embeds into a reflexive space with a 1-symmetric 2R norm. Partial results on 1-symmetric 2R renormings of spaces with a symmetric basis are obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
8.30%
发文量
67
审稿时长
>12 weeks
期刊介绍: The Banach Journal of Mathematical Analysis (Banach J. Math. Anal.) is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Banach J. Math. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and operator theory and all modern related topics. Banach J. Math. Anal. normally publishes survey articles and original research papers numbering 15 pages or more in the journal’s style. Shorter papers may be submitted to the Annals of Functional Analysis or Advances in Operator Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信