MEGS:银河结构形态学评估

Ufuk Çakır, Tobias Buck
{"title":"MEGS:银河结构形态学评估","authors":"Ufuk Çakır, Tobias Buck","doi":"arxiv-2409.10346","DOIUrl":null,"url":null,"abstract":"Understanding the morphology of galaxies is a critical aspect of astrophysics\nresearch, providing insight into the formation, evolution, and physical\nproperties of these vast cosmic structures. Various observational and\ncomputational methods have been developed to quantify galaxy morphology, and\nwith the advent of large galaxy simulations, the need for automated and\neffective classification methods has become increasingly important. This paper\ninvestigates the use of Principal Component Analysis (PCA) as an interpretable\ndimensionality reduction algorithm for galaxy morphology using the IllustrisTNG\ncosmological simulation dataset with the aim of developing a generative model\nfor galaxies. We first generate a dataset of 2D images and 3D cubes of galaxies\nfrom the IllustrisTNG simulation, focusing on the mass, metallicity, and\nstellar age distribution of each galaxy. PCA is then applied to this data,\ntransforming it into a lower-dimensional image space, where closeness of data\npoints corresponds to morphological similarity. We find that PCA can\neffectively capture the key morphological features of galaxies, with a\nsignificant proportion of the variance in the data being explained by a small\nnumber of components. With our method we achieve a dimensionality reduction by\na factor of $\\sim200$ for 2D images and $\\sim3650$ for 3D cubes at a\nreconstruction accuracy below five percent. Our results illustrate the\npotential of PCA in compressing large cosmological simulations into an\ninterpretable generative model for galaxies that can easily be used in various\ndownstream tasks such as galaxy classification and analysis.","PeriodicalId":501187,"journal":{"name":"arXiv - PHYS - Astrophysics of Galaxies","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MEGS: Morphological Evaluation of Galactic Structure\",\"authors\":\"Ufuk Çakır, Tobias Buck\",\"doi\":\"arxiv-2409.10346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the morphology of galaxies is a critical aspect of astrophysics\\nresearch, providing insight into the formation, evolution, and physical\\nproperties of these vast cosmic structures. Various observational and\\ncomputational methods have been developed to quantify galaxy morphology, and\\nwith the advent of large galaxy simulations, the need for automated and\\neffective classification methods has become increasingly important. This paper\\ninvestigates the use of Principal Component Analysis (PCA) as an interpretable\\ndimensionality reduction algorithm for galaxy morphology using the IllustrisTNG\\ncosmological simulation dataset with the aim of developing a generative model\\nfor galaxies. We first generate a dataset of 2D images and 3D cubes of galaxies\\nfrom the IllustrisTNG simulation, focusing on the mass, metallicity, and\\nstellar age distribution of each galaxy. PCA is then applied to this data,\\ntransforming it into a lower-dimensional image space, where closeness of data\\npoints corresponds to morphological similarity. We find that PCA can\\neffectively capture the key morphological features of galaxies, with a\\nsignificant proportion of the variance in the data being explained by a small\\nnumber of components. With our method we achieve a dimensionality reduction by\\na factor of $\\\\sim200$ for 2D images and $\\\\sim3650$ for 3D cubes at a\\nreconstruction accuracy below five percent. Our results illustrate the\\npotential of PCA in compressing large cosmological simulations into an\\ninterpretable generative model for galaxies that can easily be used in various\\ndownstream tasks such as galaxy classification and analysis.\",\"PeriodicalId\":501187,\"journal\":{\"name\":\"arXiv - PHYS - Astrophysics of Galaxies\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Astrophysics of Galaxies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Astrophysics of Galaxies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

了解星系的形态是天体物理学研究的一个重要方面,可以深入了解这些巨大宇宙结构的形成、演化和物理特性。目前已经开发出各种观测和计算方法来量化星系形态,随着大型星系模拟的出现,对自动有效分类方法的需求也变得越来越重要。本文利用 IllustrisTNG 宇宙学模拟数据集研究了如何使用主成分分析(PCA)作为星系形态的解释性降维算法,目的是开发一种星系生成模型。我们首先从IllustrisTNG模拟中生成了星系的二维图像和三维立方体数据集,重点关注每个星系的质量、金属性和恒星年龄分布。然后将 PCA 应用于这些数据,将其转换为低维图像空间,其中数据点的接近程度与形态相似性相对应。我们发现 PCA 能够有效地捕捉星系的主要形态特征,数据方差的很大一部分是由少量的成分解释的。利用我们的方法,我们可以将二维图像的维数降低 $/sim200$,将三维立方体的维数降低 $/sim3650$,而且构建精度低于 5%。我们的结果说明了PCA在将大型宇宙学模拟压缩成可解释的星系生成模型方面的潜力,该模型可以很容易地用于各种下游任务,如星系分类和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MEGS: Morphological Evaluation of Galactic Structure
Understanding the morphology of galaxies is a critical aspect of astrophysics research, providing insight into the formation, evolution, and physical properties of these vast cosmic structures. Various observational and computational methods have been developed to quantify galaxy morphology, and with the advent of large galaxy simulations, the need for automated and effective classification methods has become increasingly important. This paper investigates the use of Principal Component Analysis (PCA) as an interpretable dimensionality reduction algorithm for galaxy morphology using the IllustrisTNG cosmological simulation dataset with the aim of developing a generative model for galaxies. We first generate a dataset of 2D images and 3D cubes of galaxies from the IllustrisTNG simulation, focusing on the mass, metallicity, and stellar age distribution of each galaxy. PCA is then applied to this data, transforming it into a lower-dimensional image space, where closeness of data points corresponds to morphological similarity. We find that PCA can effectively capture the key morphological features of galaxies, with a significant proportion of the variance in the data being explained by a small number of components. With our method we achieve a dimensionality reduction by a factor of $\sim200$ for 2D images and $\sim3650$ for 3D cubes at a reconstruction accuracy below five percent. Our results illustrate the potential of PCA in compressing large cosmological simulations into an interpretable generative model for galaxies that can easily be used in various downstream tasks such as galaxy classification and analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信