三元哥德巴赫中几乎不需要所有素数

Debmalya Basak, Raghavendra N. Bhat, Anji Dong, Alexandru Zaharescu
{"title":"三元哥德巴赫中几乎不需要所有素数","authors":"Debmalya Basak, Raghavendra N. Bhat, Anji Dong, Alexandru Zaharescu","doi":"arxiv-2409.08968","DOIUrl":null,"url":null,"abstract":"The ternary Goldbach conjecture states that every odd number $m \\geqslant 7$\ncan be written as the sum of three primes. We construct a set of primes\n$\\mathbb{P}$ defined by an expanding system of admissible congruences such that\nalmost all primes are not in $\\mathbb{P}$ and still, the ternary Goldbach\nconjecture holds true with primes restricted to $\\mathbb{P}$.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost all primes are not needed in Ternary Goldbach\",\"authors\":\"Debmalya Basak, Raghavendra N. Bhat, Anji Dong, Alexandru Zaharescu\",\"doi\":\"arxiv-2409.08968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ternary Goldbach conjecture states that every odd number $m \\\\geqslant 7$\\ncan be written as the sum of three primes. We construct a set of primes\\n$\\\\mathbb{P}$ defined by an expanding system of admissible congruences such that\\nalmost all primes are not in $\\\\mathbb{P}$ and still, the ternary Goldbach\\nconjecture holds true with primes restricted to $\\\\mathbb{P}$.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

三元哥德巴赫猜想指出,每个奇数 $m \geqslant 7$ 都可以写成三个素数之和。我们构建了一个由可容许同余的扩展系统定义的素数集$\mathbb{P}$,使得几乎所有素数都不在$\mathbb{P}$中,并且在素数被限制在$\mathbb{P}$中时,三元哥德巴赫猜想仍然成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Almost all primes are not needed in Ternary Goldbach
The ternary Goldbach conjecture states that every odd number $m \geqslant 7$ can be written as the sum of three primes. We construct a set of primes $\mathbb{P}$ defined by an expanding system of admissible congruences such that almost all primes are not in $\mathbb{P}$ and still, the ternary Goldbach conjecture holds true with primes restricted to $\mathbb{P}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信