基于第一矩和 c 统计量的风险分布识别

Mohsen Sadatsafavi, Tae Yoon Lee, John Petkau
{"title":"基于第一矩和 c 统计量的风险分布识别","authors":"Mohsen Sadatsafavi, Tae Yoon Lee, John Petkau","doi":"arxiv-2409.09178","DOIUrl":null,"url":null,"abstract":"We show that for any family of distributions with support on [0,1] with\nstrictly monotonic cumulative distribution function (CDF) that has no jumps and\nis quantile-identifiable (i.e., any two distinct quantiles identify the\ndistribution), knowing the first moment and c-statistic is enough to identify\nthe distribution. The derivations motivate numerical algorithms for mapping a\ngiven pair of expected value and c-statistic to the parameters of specified\ntwo-parameter distributions for probabilities. We implemented these algorithms\nin R and in a simulation study evaluated their numerical accuracy for common\nfamilies of distributions for risks (beta, logit-normal, and probit-normal). An\narea of application for these developments is in risk prediction modeling\n(e.g., sample size calculations and Value of Information analysis), where one\nmight need to estimate the parameters of the distribution of predicted risks\nfrom the reported summary statistics.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of distributions for risks based on the first moment and c-statistic\",\"authors\":\"Mohsen Sadatsafavi, Tae Yoon Lee, John Petkau\",\"doi\":\"arxiv-2409.09178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that for any family of distributions with support on [0,1] with\\nstrictly monotonic cumulative distribution function (CDF) that has no jumps and\\nis quantile-identifiable (i.e., any two distinct quantiles identify the\\ndistribution), knowing the first moment and c-statistic is enough to identify\\nthe distribution. The derivations motivate numerical algorithms for mapping a\\ngiven pair of expected value and c-statistic to the parameters of specified\\ntwo-parameter distributions for probabilities. We implemented these algorithms\\nin R and in a simulation study evaluated their numerical accuracy for common\\nfamilies of distributions for risks (beta, logit-normal, and probit-normal). An\\narea of application for these developments is in risk prediction modeling\\n(e.g., sample size calculations and Value of Information analysis), where one\\nmight need to estimate the parameters of the distribution of predicted risks\\nfrom the reported summary statistics.\",\"PeriodicalId\":501425,\"journal\":{\"name\":\"arXiv - STAT - Methodology\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,对于任何支持[0,1]且具有严格单调累积分布函数(CDF)、无跳跃且可量值化(即任何两个不同的量值可识别该分布)的分布族,知道第一矩和 c 统计量就足以识别该分布。这些推导激发了将给定的一对期望值和 c 统计量映射到指定概率双参数分布参数的数值算法。我们用 R 语言实现了这些算法,并在模拟研究中评估了它们对常见风险分布系列(β、logit-正态分布和 probit-正态分布)的数值精度。这些开发成果的一个应用领域是风险预测建模(如样本大小计算和信息价值分析),在这种情况下,我们可能需要根据报告的汇总统计量来估计预测风险分布的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of distributions for risks based on the first moment and c-statistic
We show that for any family of distributions with support on [0,1] with strictly monotonic cumulative distribution function (CDF) that has no jumps and is quantile-identifiable (i.e., any two distinct quantiles identify the distribution), knowing the first moment and c-statistic is enough to identify the distribution. The derivations motivate numerical algorithms for mapping a given pair of expected value and c-statistic to the parameters of specified two-parameter distributions for probabilities. We implemented these algorithms in R and in a simulation study evaluated their numerical accuracy for common families of distributions for risks (beta, logit-normal, and probit-normal). An area of application for these developments is in risk prediction modeling (e.g., sample size calculations and Value of Information analysis), where one might need to estimate the parameters of the distribution of predicted risks from the reported summary statistics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信