广义线性混合模型的精确后验均值和协方差

Tonglin Zhang
{"title":"广义线性混合模型的精确后验均值和协方差","authors":"Tonglin Zhang","doi":"arxiv-2409.09310","DOIUrl":null,"url":null,"abstract":"A novel method is proposed for the exact posterior mean and covariance of the\nrandom effects given the response in a generalized linear mixed model (GLMM)\nwhen the response does not follow normal. The research solves a long-standing\nproblem in Bayesian statistics when an intractable integral appears in the\nposterior distribution. It is well-known that the posterior distribution of the\nrandom effects given the response in a GLMM when the response does not follow\nnormal contains intractable integrals. Previous methods rely on Monte Carlo\nsimulations for the posterior distributions. They do not provide the exact\nposterior mean and covariance of the random effects given the response. The\nspecial integral computation (SIC) method is proposed to overcome the\ndifficulty. The SIC method does not use the posterior distribution in the\ncomputation. It devises an optimization problem to reach the task. An advantage\nis that the computation of the posterior distribution is unnecessary. The\nproposed SIC avoids the main difficulty in Bayesian analysis when intractable\nintegrals appear in the posterior distribution.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact Posterior Mean and Covariance for Generalized Linear Mixed Models\",\"authors\":\"Tonglin Zhang\",\"doi\":\"arxiv-2409.09310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel method is proposed for the exact posterior mean and covariance of the\\nrandom effects given the response in a generalized linear mixed model (GLMM)\\nwhen the response does not follow normal. The research solves a long-standing\\nproblem in Bayesian statistics when an intractable integral appears in the\\nposterior distribution. It is well-known that the posterior distribution of the\\nrandom effects given the response in a GLMM when the response does not follow\\nnormal contains intractable integrals. Previous methods rely on Monte Carlo\\nsimulations for the posterior distributions. They do not provide the exact\\nposterior mean and covariance of the random effects given the response. The\\nspecial integral computation (SIC) method is proposed to overcome the\\ndifficulty. The SIC method does not use the posterior distribution in the\\ncomputation. It devises an optimization problem to reach the task. An advantage\\nis that the computation of the posterior distribution is unnecessary. The\\nproposed SIC avoids the main difficulty in Bayesian analysis when intractable\\nintegrals appear in the posterior distribution.\",\"PeriodicalId\":501425,\"journal\":{\"name\":\"arXiv - STAT - Methodology\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新方法,用于在广义线性混合模型(GLMM)中,当响应不符合正态分布时,给定响应的随机效应的精确后验均值和协方差。这项研究解决了贝叶斯统计中一个长期存在的问题,即在后验分布中出现一个难以解决的积分。众所周知,当 GLMM 中的响应不服从正态分布时,给定响应的随机效应的后验分布包含难以处理的积分。以前的方法依赖蒙特卡洛模拟来计算后验分布。这些方法无法提供给定响应的随机效应的精确后验均值和协方差。为了克服这一困难,我们提出了特殊积分计算(SIC)方法。SIC 方法在计算中不使用后验分布。它设计了一个优化问题来完成任务。其优点是无需计算后验分布。所提出的 SIC 方法避免了贝叶斯分析中的主要困难,即在后验分布中出现难以处理的积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact Posterior Mean and Covariance for Generalized Linear Mixed Models
A novel method is proposed for the exact posterior mean and covariance of the random effects given the response in a generalized linear mixed model (GLMM) when the response does not follow normal. The research solves a long-standing problem in Bayesian statistics when an intractable integral appears in the posterior distribution. It is well-known that the posterior distribution of the random effects given the response in a GLMM when the response does not follow normal contains intractable integrals. Previous methods rely on Monte Carlo simulations for the posterior distributions. They do not provide the exact posterior mean and covariance of the random effects given the response. The special integral computation (SIC) method is proposed to overcome the difficulty. The SIC method does not use the posterior distribution in the computation. It devises an optimization problem to reach the task. An advantage is that the computation of the posterior distribution is unnecessary. The proposed SIC avoids the main difficulty in Bayesian analysis when intractable integrals appear in the posterior distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信