{"title":"高速场景下重型车辆自动排障避障策略研究","authors":"Yingfeng Cai, Lili Zhan, Xiaoqiang Sun, Yubo Lian, Youguo He, Long Chen","doi":"10.1177/09544070241276062","DOIUrl":null,"url":null,"abstract":"Amidst the rapid progression of the road transport industry, the safety and efficiency of heavy-vehicle platoons have garnered significant attention. The study tackles the challenge of obstacle avoidance presented by vehicles owing to their considerable mass, delayed response times, and line-of-sight impediments, by introducing a cooperative obstacle avoidance system for heavy-vehicle platoons based on deep reinforcement learning. The system comprises three primary modules: perception, decision-making, and control. Initially, the perception module acquires real-time environmental data. Subsequently, the decision-making module formulates obstacle avoidance decisions based on the acquired data. Specifically, it implements a two-stage braking obstacle avoidance strategy under low collision risk scenarios, while employing a fifth-degree polynomial for planning and tracking obstacle avoidance paths under high collision risk conditions suitable for steering maneuvers. The control module utilizes the local multi-agent deep deterministic policy gradient (LADDPG) algorithm to train the heavy-vehicle platoon agents, ensuring the formation’s maintenance while mitigating collisions with other vehicles and obstacles. The effectiveness of the proposed system is substantiated through simulation experiments, demonstrating its adaptability to various traffic conditions, selection of suitable obstacle avoidance strategies, and significant enhancement of obstacle avoidance performance and heavy-vehicle platoon stability.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Obstacle Avoidance Strategy of Automated Heavy Vehicle Platoon in High-Speed Scenarios\",\"authors\":\"Yingfeng Cai, Lili Zhan, Xiaoqiang Sun, Yubo Lian, Youguo He, Long Chen\",\"doi\":\"10.1177/09544070241276062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Amidst the rapid progression of the road transport industry, the safety and efficiency of heavy-vehicle platoons have garnered significant attention. The study tackles the challenge of obstacle avoidance presented by vehicles owing to their considerable mass, delayed response times, and line-of-sight impediments, by introducing a cooperative obstacle avoidance system for heavy-vehicle platoons based on deep reinforcement learning. The system comprises three primary modules: perception, decision-making, and control. Initially, the perception module acquires real-time environmental data. Subsequently, the decision-making module formulates obstacle avoidance decisions based on the acquired data. Specifically, it implements a two-stage braking obstacle avoidance strategy under low collision risk scenarios, while employing a fifth-degree polynomial for planning and tracking obstacle avoidance paths under high collision risk conditions suitable for steering maneuvers. The control module utilizes the local multi-agent deep deterministic policy gradient (LADDPG) algorithm to train the heavy-vehicle platoon agents, ensuring the formation’s maintenance while mitigating collisions with other vehicles and obstacles. The effectiveness of the proposed system is substantiated through simulation experiments, demonstrating its adaptability to various traffic conditions, selection of suitable obstacle avoidance strategies, and significant enhancement of obstacle avoidance performance and heavy-vehicle platoon stability.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544070241276062\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544070241276062","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Research on Obstacle Avoidance Strategy of Automated Heavy Vehicle Platoon in High-Speed Scenarios
Amidst the rapid progression of the road transport industry, the safety and efficiency of heavy-vehicle platoons have garnered significant attention. The study tackles the challenge of obstacle avoidance presented by vehicles owing to their considerable mass, delayed response times, and line-of-sight impediments, by introducing a cooperative obstacle avoidance system for heavy-vehicle platoons based on deep reinforcement learning. The system comprises three primary modules: perception, decision-making, and control. Initially, the perception module acquires real-time environmental data. Subsequently, the decision-making module formulates obstacle avoidance decisions based on the acquired data. Specifically, it implements a two-stage braking obstacle avoidance strategy under low collision risk scenarios, while employing a fifth-degree polynomial for planning and tracking obstacle avoidance paths under high collision risk conditions suitable for steering maneuvers. The control module utilizes the local multi-agent deep deterministic policy gradient (LADDPG) algorithm to train the heavy-vehicle platoon agents, ensuring the formation’s maintenance while mitigating collisions with other vehicles and obstacles. The effectiveness of the proposed system is substantiated through simulation experiments, demonstrating its adaptability to various traffic conditions, selection of suitable obstacle avoidance strategies, and significant enhancement of obstacle avoidance performance and heavy-vehicle platoon stability.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.