关于 Diophantine 方程 $J_n +J_m =L_k$ 和 $L_n +L_m =J_k$

Osama Salah, A. Elsonbaty, Mohammed Abdul Azim Seoud, Mohamed Anwar
{"title":"关于 Diophantine 方程 $J_n +J_m =L_k$ 和 $L_n +L_m =J_k$","authors":"Osama Salah, A. Elsonbaty, Mohammed Abdul Azim Seoud, Mohamed Anwar","doi":"arxiv-2409.09791","DOIUrl":null,"url":null,"abstract":"This paper finds all Lucas numbers which are the sum of two Jacobsthal\nnumbers. It also finds all Jacobsthal numbers which are the sum of two Lucas\nnumbers. In general, we find all non-negative integer solutions $(n, m, k)$ of\nthe two Diophantine equations $L_n +L_m =J_k$ and $J_n +J_m =L_K,$ where\n$\\left\\lbrace L_{k}\\right\\rbrace_{k\\geq0}$ and $\\left\\lbrace\nJ_{n}\\right\\rbrace_{n\\geq0}$ are the sequences of Lucas and Jacobsthal numbers,\nrespectively. Our primary results are supported by an adaption of the Baker's\ntheorem for linear forms in logarithms and Dujella and Peth\\H{o}'s reduction\nmethod.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Diophantine Equations $J_n +J_m =L_k$ and $L_n +L_m =J_k$\",\"authors\":\"Osama Salah, A. Elsonbaty, Mohammed Abdul Azim Seoud, Mohamed Anwar\",\"doi\":\"arxiv-2409.09791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper finds all Lucas numbers which are the sum of two Jacobsthal\\nnumbers. It also finds all Jacobsthal numbers which are the sum of two Lucas\\nnumbers. In general, we find all non-negative integer solutions $(n, m, k)$ of\\nthe two Diophantine equations $L_n +L_m =J_k$ and $J_n +J_m =L_K,$ where\\n$\\\\left\\\\lbrace L_{k}\\\\right\\\\rbrace_{k\\\\geq0}$ and $\\\\left\\\\lbrace\\nJ_{n}\\\\right\\\\rbrace_{n\\\\geq0}$ are the sequences of Lucas and Jacobsthal numbers,\\nrespectively. Our primary results are supported by an adaption of the Baker's\\ntheorem for linear forms in logarithms and Dujella and Peth\\\\H{o}'s reduction\\nmethod.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文发现所有卢卡斯数都是两个雅各布斯塔尔数的和。本文还发现所有雅各布斯塔尔数都是两个卢卡斯数之和。一般来说,我们找到了两个二阶方程 $L_n +L_m =J_k$ 和 $J_n +J_m =L_K$ 的所有非负整数解 $(n,m,k)$,其中$left/lbrace L_{k}\right\rbrace_{k\geq0}$ 和 $left/lbraceJ_{n}\right\rbrace_{n\geq0}$ 分别是卢卡斯数和雅各布斯塔尔数的序列。我们的主要结果得到了对数线性形式的贝克定理的改编以及杜耶拉和佩特霍夫的还原方法的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Diophantine Equations $J_n +J_m =L_k$ and $L_n +L_m =J_k$
This paper finds all Lucas numbers which are the sum of two Jacobsthal numbers. It also finds all Jacobsthal numbers which are the sum of two Lucas numbers. In general, we find all non-negative integer solutions $(n, m, k)$ of the two Diophantine equations $L_n +L_m =J_k$ and $J_n +J_m =L_K,$ where $\left\lbrace L_{k}\right\rbrace_{k\geq0}$ and $\left\lbrace J_{n}\right\rbrace_{n\geq0}$ are the sequences of Lucas and Jacobsthal numbers, respectively. Our primary results are supported by an adaption of the Baker's theorem for linear forms in logarithms and Dujella and Peth\H{o}'s reduction method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信