双射基 I 上三元圆锥族的局部可溶性

Cameron Wilson
{"title":"双射基 I 上三元圆锥族的局部可溶性","authors":"Cameron Wilson","doi":"arxiv-2409.10688","DOIUrl":null,"url":null,"abstract":"Let $f,g\\in\\mathbb{Z}[u_1,u_2]$ be binary quadratic forms. We provide upper\nbounds for the number of rational points\n$(u,v)\\in\\mathbb{P}^1(\\mathbb{Q})\\times\\mathbb{P}^1(\\mathbb{Q})$ such that the\nternary conic \\[ X_{(u,v)}: f(u_1,u_2)x^2 + g(v_1,v_2)y^2 = z^2 \\] has a rational point. We also give some conditions under which lower\nbounds exist.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local solubility of a family of ternary conics over a biprojective base I\",\"authors\":\"Cameron Wilson\",\"doi\":\"arxiv-2409.10688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $f,g\\\\in\\\\mathbb{Z}[u_1,u_2]$ be binary quadratic forms. We provide upper\\nbounds for the number of rational points\\n$(u,v)\\\\in\\\\mathbb{P}^1(\\\\mathbb{Q})\\\\times\\\\mathbb{P}^1(\\\\mathbb{Q})$ such that the\\nternary conic \\\\[ X_{(u,v)}: f(u_1,u_2)x^2 + g(v_1,v_2)y^2 = z^2 \\\\] has a rational point. We also give some conditions under which lower\\nbounds exist.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $f,g\in\mathbb{Z}[u_1,u_2]$ 是二元二次方程形式。我们给出了有理点的数量上限$(u,v)\in\mathbb{P}^1(\mathbb{Q})\times\mathbb{P}^1(\mathbb{Q})$,使得二次圆锥体[ X_{(u,v)}: f(u_1,u_2)x^2 + g(v_1,v_2)y^2 = z^2 \]有一个有理点。我们还给出了一些存在下限的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local solubility of a family of ternary conics over a biprojective base I
Let $f,g\in\mathbb{Z}[u_1,u_2]$ be binary quadratic forms. We provide upper bounds for the number of rational points $(u,v)\in\mathbb{P}^1(\mathbb{Q})\times\mathbb{P}^1(\mathbb{Q})$ such that the ternary conic \[ X_{(u,v)}: f(u_1,u_2)x^2 + g(v_1,v_2)y^2 = z^2 \] has a rational point. We also give some conditions under which lower bounds exist.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信