赫鲁晓夫斯基定理的代数证明

Thomas Wisson
{"title":"赫鲁晓夫斯基定理的代数证明","authors":"Thomas Wisson","doi":"arxiv-2409.08370","DOIUrl":null,"url":null,"abstract":"In his paper on the Mordell-Lang conjecture, Hrushovski employed techniques\nfrom model theory to prove the function field version of the conjecture. In\ndoing so he was able to answer a related question of Voloch, which we refer to\nhenceforth as Hrushovski's theorem. In this paper we shall give an alternative\nproof of said theorem in the characteristic $p$ setting, but using purely\nalgebro-geometric ideas.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Algebraic Proof of Hrushovski's Theorem\",\"authors\":\"Thomas Wisson\",\"doi\":\"arxiv-2409.08370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In his paper on the Mordell-Lang conjecture, Hrushovski employed techniques\\nfrom model theory to prove the function field version of the conjecture. In\\ndoing so he was able to answer a related question of Voloch, which we refer to\\nhenceforth as Hrushovski's theorem. In this paper we shall give an alternative\\nproof of said theorem in the characteristic $p$ setting, but using purely\\nalgebro-geometric ideas.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在关于莫德尔-朗猜想的论文中,赫鲁晓夫斯基运用了模型论的技术来证明该猜想的函数场版本。这样,他就回答了沃洛赫的一个相关问题,我们将其称为赫鲁晓夫斯基定理。在本文中,我们将使用纯粹的几何思想,在特征 $p$ 背景下给出上述定理的另一种证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Algebraic Proof of Hrushovski's Theorem
In his paper on the Mordell-Lang conjecture, Hrushovski employed techniques from model theory to prove the function field version of the conjecture. In doing so he was able to answer a related question of Voloch, which we refer to henceforth as Hrushovski's theorem. In this paper we shall give an alternative proof of said theorem in the characteristic $p$ setting, but using purely algebro-geometric ideas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信