无 GCD 图形的近乎锐利的定量达芬-谢弗

Santiago Vazquez
{"title":"无 GCD 图形的近乎锐利的定量达芬-谢弗","authors":"Santiago Vazquez","doi":"arxiv-2409.10386","DOIUrl":null,"url":null,"abstract":"In recent work, Koukoulopoulos, Maynard and Yang proved an almost sharp\nquantitative bound for the Duffin-Schaeffer conjecture, using the\nKoukoulopoulos-Maynard technique of GCD graphs. This coincided with a\nsimplification of the previous best known argument by Hauke, Vazquez and\nWalker, which avoided the use of the GCD graph machinery. In the present paper,\nwe extend this argument to the new elements of the proof of\nKoukoulopoulos-Maynard-Yang. Combined with the work of Hauke-Vazquez-Walker,\nthis provides a new proof of the almost sharp bound for the Duffin-Schaeffer\nconjecture, which avoids the use of GCD graphs entirely.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost-Sharp Quantitative Duffin-Shaeffer without GCD Graphs\",\"authors\":\"Santiago Vazquez\",\"doi\":\"arxiv-2409.10386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent work, Koukoulopoulos, Maynard and Yang proved an almost sharp\\nquantitative bound for the Duffin-Schaeffer conjecture, using the\\nKoukoulopoulos-Maynard technique of GCD graphs. This coincided with a\\nsimplification of the previous best known argument by Hauke, Vazquez and\\nWalker, which avoided the use of the GCD graph machinery. In the present paper,\\nwe extend this argument to the new elements of the proof of\\nKoukoulopoulos-Maynard-Yang. Combined with the work of Hauke-Vazquez-Walker,\\nthis provides a new proof of the almost sharp bound for the Duffin-Schaeffer\\nconjecture, which avoids the use of GCD graphs entirely.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在最近的工作中,库库洛普勒斯、梅纳德和杨利用库库洛普勒斯-梅纳德的 GCD 图技术,证明了达芬-谢弗猜想的近乎尖锐的定量约束。这与豪克(Hauke)、巴斯克斯(Vazquez)和沃克(Walker)对之前最著名论证的简化不谋而合,后者避免了使用 GCD 图机制。在本文中,我们将这一论证扩展到库库洛普洛斯-梅纳德-杨证明的新元素。结合豪克-瓦兹奎兹-沃克的工作,这为达芬-谢弗猜想的几乎尖界提供了新的证明,它完全避免了对 GCD 图的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Almost-Sharp Quantitative Duffin-Shaeffer without GCD Graphs
In recent work, Koukoulopoulos, Maynard and Yang proved an almost sharp quantitative bound for the Duffin-Schaeffer conjecture, using the Koukoulopoulos-Maynard technique of GCD graphs. This coincided with a simplification of the previous best known argument by Hauke, Vazquez and Walker, which avoided the use of the GCD graph machinery. In the present paper, we extend this argument to the new elements of the proof of Koukoulopoulos-Maynard-Yang. Combined with the work of Hauke-Vazquez-Walker, this provides a new proof of the almost sharp bound for the Duffin-Schaeffer conjecture, which avoids the use of GCD graphs entirely.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信