{"title":"有限域上多项式某些族的动态不可约性","authors":"Tori Day, Rebecca DeLand, Jamie Juul, Cigole Thomas, Bianca Thompson, Bella Tobin","doi":"arxiv-2409.10467","DOIUrl":null,"url":null,"abstract":"We determine necessary and sufficient conditions for unicritical polynomials\nto be dynamically irreducible over finite fields. This result extends the\nresults of Boston-Jones and Hamblen-Jones-Madhu regarding the dynamical\nirreducibility of particular families of unicritical polynomials. We also\ninvestigate dynamical irreducibility conditions for cubic and shifted\nlinearized polynomials.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical Irreducibility of Certain Families of Polynomials over Finite Fields\",\"authors\":\"Tori Day, Rebecca DeLand, Jamie Juul, Cigole Thomas, Bianca Thompson, Bella Tobin\",\"doi\":\"arxiv-2409.10467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We determine necessary and sufficient conditions for unicritical polynomials\\nto be dynamically irreducible over finite fields. This result extends the\\nresults of Boston-Jones and Hamblen-Jones-Madhu regarding the dynamical\\nirreducibility of particular families of unicritical polynomials. We also\\ninvestigate dynamical irreducibility conditions for cubic and shifted\\nlinearized polynomials.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamical Irreducibility of Certain Families of Polynomials over Finite Fields
We determine necessary and sufficient conditions for unicritical polynomials
to be dynamically irreducible over finite fields. This result extends the
results of Boston-Jones and Hamblen-Jones-Madhu regarding the dynamical
irreducibility of particular families of unicritical polynomials. We also
investigate dynamical irreducibility conditions for cubic and shifted
linearized polynomials.