{"title":"量子信息论和算子代数中的不可判定性和不完备性","authors":"Isaac Goldbring","doi":"arxiv-2409.08342","DOIUrl":null,"url":null,"abstract":"We survey a number of incompleteness results in operator algebras stemming\nfrom the recent undecidability result in quantum complexity theory known as\n$\\operatorname{MIP}^*=\\operatorname{RE}$, the most prominent of which is the\nG\\\"odelian refutation of the Connes Embedding Problem. We also discuss the very\nrecent use of $\\operatorname{MIP}^*=\\operatorname{RE}$ in refuting the\nAldous-Lyons conjecture in probability theory.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Undecidability and incompleteness in quantum information theory and operator algebras\",\"authors\":\"Isaac Goldbring\",\"doi\":\"arxiv-2409.08342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We survey a number of incompleteness results in operator algebras stemming\\nfrom the recent undecidability result in quantum complexity theory known as\\n$\\\\operatorname{MIP}^*=\\\\operatorname{RE}$, the most prominent of which is the\\nG\\\\\\\"odelian refutation of the Connes Embedding Problem. We also discuss the very\\nrecent use of $\\\\operatorname{MIP}^*=\\\\operatorname{RE}$ in refuting the\\nAldous-Lyons conjecture in probability theory.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Undecidability and incompleteness in quantum information theory and operator algebras
We survey a number of incompleteness results in operator algebras stemming
from the recent undecidability result in quantum complexity theory known as
$\operatorname{MIP}^*=\operatorname{RE}$, the most prominent of which is the
G\"odelian refutation of the Connes Embedding Problem. We also discuss the very
recent use of $\operatorname{MIP}^*=\operatorname{RE}$ in refuting the
Aldous-Lyons conjecture in probability theory.