量子信息论和算子代数中的不可判定性和不完备性

Isaac Goldbring
{"title":"量子信息论和算子代数中的不可判定性和不完备性","authors":"Isaac Goldbring","doi":"arxiv-2409.08342","DOIUrl":null,"url":null,"abstract":"We survey a number of incompleteness results in operator algebras stemming\nfrom the recent undecidability result in quantum complexity theory known as\n$\\operatorname{MIP}^*=\\operatorname{RE}$, the most prominent of which is the\nG\\\"odelian refutation of the Connes Embedding Problem. We also discuss the very\nrecent use of $\\operatorname{MIP}^*=\\operatorname{RE}$ in refuting the\nAldous-Lyons conjecture in probability theory.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Undecidability and incompleteness in quantum information theory and operator algebras\",\"authors\":\"Isaac Goldbring\",\"doi\":\"arxiv-2409.08342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We survey a number of incompleteness results in operator algebras stemming\\nfrom the recent undecidability result in quantum complexity theory known as\\n$\\\\operatorname{MIP}^*=\\\\operatorname{RE}$, the most prominent of which is the\\nG\\\\\\\"odelian refutation of the Connes Embedding Problem. We also discuss the very\\nrecent use of $\\\\operatorname{MIP}^*=\\\\operatorname{RE}$ in refuting the\\nAldous-Lyons conjecture in probability theory.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了算子代数中的一些不完备性结果,这些不完备性结果源自量子复杂性理论中被称为$\operatorname{MIP}^*=\operatorname{RE}$的最新不可判定性结果,其中最突出的是对康纳斯嵌入问题的G "odelian refutation。我们还讨论了$\operatorname{MIP}^*=\operatorname{RE}$在反驳概率论中的阿尔都斯-里昂猜想中的最新应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Undecidability and incompleteness in quantum information theory and operator algebras
We survey a number of incompleteness results in operator algebras stemming from the recent undecidability result in quantum complexity theory known as $\operatorname{MIP}^*=\operatorname{RE}$, the most prominent of which is the G\"odelian refutation of the Connes Embedding Problem. We also discuss the very recent use of $\operatorname{MIP}^*=\operatorname{RE}$ in refuting the Aldous-Lyons conjecture in probability theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信